MODELOWANIE KOMPUTEROWE W PRAKTYCE – PRZYKŁADY I ZASTOSOWANIA

Obliczenia numeryczne i symulacje komputerowe w środowisku COMSOL Multiphysics

Krzysztof Szyszkiewicz-Warzecha Robert Filipek Jakub Stec Anna Górska

MODELOWANIE KOMPUTEROWE W PRAKTYCE – PRZYKŁADY I ZASTOSOWANIA

Obliczenia numeryczne i symulacje komputerowe w środowisku COMSOL Multiphysics

Kraków 2024

Patronat

Komisja Nauk Ceramicznych PAN O/Kraków

Recenzent

Prof. dr hab. inż. Dariusz Kata

© Copyright Wydawnictwo Naukowe AKAPIT, Kraków 2024

Projekt okładki i stron tytułowych

Wydawnictwo Naukowe "Akapit"

Utwór w całości ani we fragmentach nie może być powielany ani rozpowszechniany za pomocą urządzeń elektronicznych, kopiujących, nagrywających i innych bez pisemnej zgody posiadacza praw autorskich.

ISBN 978-83-65955-83-8

Wydawnictwo Naukowe "Akapit", Kraków Kom: 608 024 572; www.akapit.krakow.pl e-mail: wn@akapit.krakow.pl

Spis treści

Spis treści1		
Zamiast wstępu3		
Podziękowania4		
1. Wprowadzenie do modelowania5		
1.1. Ośrodek ciągły5		
1.2. Prawa zachowania w ośrodku ciągłym8		
1.2.1. Bilans masy8		
1.2.2. Bilans dla składników mieszaniny10		
1.2.3. Transport ciepła (bilans energii wewnętrznej)12		
1.2.4. Mechanika płynów (bilans pędu)14		
1.3. Równania konstytutywne16		
1.3.1. Równania konstytutywne dla bilansu składnika16		
1.3.2. Równania konstytutywne dla bilansu pędu19		
1.4. Warunki początkowe i brzegowe22		
2. Numeryczne metody rozwiązywania zagadnień transportu25		
2.1. Sformułowanie problemu transportu masy/ciepła25		
2.2. Metoda różnic skończonych25		
2.3. Metoda elementów skończonych (MES)27		
3. Środowisko obliczeniowe COMSOL Multiphysics		
3.1. Stosowane konwencje oraz oznaczenia33		
3.2. Strumień i człony źródłowe33		
3.3. Wyrażenia33		
3.4. Parametry i zmienne34		
3.5. Stałe wbudowane (predefiniowane)36		
3.6. Jednostki		
4. Przykłady do samodzielnej nauki		
4.1. Problem dyfuzji z reakcją39		
4.2. Problem dyfuzji wzajemnej – model Darkena49		
4.3. Problem dyfuzji wzajemnej - model Onsagera57		
4.4. Problem transportu ciepła w pręcie63		

4.5. Problem transportu ciepła w pierścieniu	70
4.6. Problem dyfuzji w polikrysztale	79
5. Przykłady zastosowań	87
5.1. Transport i adsorpcja – reaktor przepływowy	87
5.2. Kinetyka nawęglania stali	99
5.3. Zjawisko Halla – czujniki ABS i ESP	
5.4. Korozja prętów zbrojeniowych w betonie	
5.5. Limit detekcji elektrod jonoselektywnych	
5.6. Transport masy w materiałach porowatych	
5.7. Optymalizacja procesu SHS	
5.8. Naprężenia w materiałach	
5.9. Ładowanie/rozładowanie ogniwa litowo-jonowego	177
6. Zestawienie rysunków	
7. Zestawienie tabel	

Zamiast wstępu

Nieustanny rozwój niedrogich i szybkich komputerów oraz dostępność oprogramowania do wielu zastosowań naukowych i inżynieryjnych przeniosły modelowanie komputerowe materiałów i procesów z małej grupy specjalistów do szerszej społeczności, która wykorzystuje modelowanie jako potężne narzędzie w swoich badaniach naukowych. Modelowanie komputerowe zapewnia nowe możliwości znacznego przyspieszenia rozwoju i udoskonalenia materiałów, od projektowania, poprzez wytwarzanie, eksploatację i recykling. Wpisuje się także w nowy trend – korelatywnego podejścia do badania właściwości materiałów i modelowania procesów.

Model fenomenologiczny jest idealizacją rzeczywistego zjawiska, procesu oparty na podstawowych prawach fizycznych i przybliżonych obserwacjach empirycznych wyrażonych jako równania konstytutywne. Sposób przeprowadzenia eksperymentu/procesu ma swoje odzwierciedlenia w warunkach początkowych i brzegowych. Modele matematyczne i przeprowadzone na ich podstawie symulacje komputerowe są zaawansowanym narzędziem do zrozumienia i przewidywania zachowania materiałów i zachodzenia procesów. Modelowanie jest najskuteczniejsze, gdy ma silny związek z eksperymentem. Dane eksperymentalne mogą służyć jako walidacja dokładności modeli. Jednak dopiero podejście korelatywne, tzn., gdy modelowanie jest stosowane razem z metodami eksperymentalnymi, może zapewnić głębsze zrozumienie materiałów i zachodzących procesów.

Modelowanie może również przewidywać zachowanie w warunkach, dla których nie mamy danych eksperymentalnych i/lub umożliwiać badanie układów z tak wieloma parametrami, że przeprowadzenie wszystkich możliwych eksperymentów jest niewykonalne. Dlatego modelowanie należy traktować jako jeszcze jedną metodę badawczą.

Formułując model zakładamy, że wszystkie parametry modelu są znane i dostępne. W praktyce, ze względu na wciąż rosnącą liczbę nowych materiałów i różnorodność procesów produkcyjnych, parametry modeli nie są dane i muszą być w jakiś sposób wyznaczone. Doskonałym przykładem korelatywnego podejścia w celu wyliczenia parametrów modeli są metody odwrotne, które wykorzystują model procesu oraz wyniki eksperymentalne.

Celem tej książki jest zapoznanie czytelnika z koncepcją modelowania oraz jego zastosowaniami w różnych obszarach nauki o materiałach i inżynierii materiałowej. Zawiera niezbędne podstawy teoretyczne modelowania komputerowego w ośrodku ciągłym, metod numerycznych oraz narzędzia obliczeniowe – oprogramowanie COMSOL Multiphysics. W książce znalazły się liczne przykłady podzielone na dwie grupy. Pierwsza część zawiera przykłady modelowania transportu masy oraz ciepła i stanowi materiał dydaktyczny adresowany głównie dla studentów studiów inżynierskich i magisterskich. Druga część to tzw. problemy *"multiphysics"*, gdzie sformułowanie problemu wymaga uwzględnienia równań bilansu masy i/lub energii i/lub pędu. Te bardziej zaawansowane przykłady przewidziane są głównie dla doktorantów oraz zainteresowanych studentów studiów drugiego stopnia. Książka może być także wykorzystywana do samokształcenia przez osoby, którzy chciałyby zapoznać się metodami modelowania komputerowego i wykorzystywać je w swojej pracy lub jako hobby.

Podziękowania

Autorzy pragną podziękować wszystkim osobom, które przyczyniły się bezpośrednio i pośrednio do powstania tej książki. Przedstawione przykłady modelowania są wynikiem współpracy z przemysłem oraz ośrodkami badawczymi w Polsce i zagranicą. Szczególne podziękowania pragniemy złożyć następującym osobom:

Janusz Tomala, Tokai Cobex Polska

Agnieszka Królikowska, Leszek Komorowski, Instytut Badawczy Dróg i Mostów w Warszawie

Sebastian Witczak, Małgorzata Konopska-Piechurska, TPA

Sebastian Kaszuba, Artur Golda, Centrum Technologiczne BETOTECH

Ehrenfried Zschech, Brandenburg University of Technology Cottbus, Germany

Marek Danielewski, Andrzej Lewenstam, Jan Deja, Artur Łagosz, Paweł Pasierb, Elżbieta Godlewska, Krzysztof Mars, Wydział Inżynierii Materiałowej i Ceramiki, Akademia Górniczo-Hutnicza w Krakowie

Jacek Tarasiuk, Sebastian Wroński, Wydział Fizyki i Informatyki Stosowanej, Akademia Górniczo-Hutnicza w Krakowie

Rozdział 5.4 niniejszej książki, przedstawiający modelowanie korozji prętów zbrojeniowych w betonie, jest inspirowany tematyką projektu badawczego OPUS 19 "Wieloskalowy model korozji prętów zbrojeniowych w oparciu o teorię stężonych elektrolitów uwzględniający trójwymiarową hierarchiczną strukturę betonu". Projekt był finansowany przez Narodowe Centrum Nauki, projekt nr 2020/37/B/ST8/02805.

Rozdział 5.7, dotyczący modelowania i optymalizacji procesu SHS, czerpie inspirację z tematyki projektu badawczego OPUS 27 "Wykorzystanie modelowania 3D, rentgenowskiej mikro i nano tomografii komputerowej oraz uczenia maszynowego do optymalizacji energooszczędnej i ekologicznej metody wytwarzania i poprawy właściwości materiałów do konwersji energii", projekt nr 2024/53/B/ST8/02813 finansowany przez Narodowe Centrum Nauki.

1. Wprowadzenie do modelowania

W tym rozdziale zostaną przedstawione podstawy modelowania w ośrodku ciągłym, równania bilansu masy, energii i pędu, równania konstytutywne oraz warunki brzegowe i początkowe. Zostanie wprowadzona również koncepcja metody odwrotnej.

1.1. Ośrodek ciągły

Rozważamy obszar Ω w przestrzeni, w którym będą zachodzić interesujące nas zjawiska. Brzeg tego obszaru, oznaczany symbolem $\partial \Omega$, oddziela wnętrze od otoczenia. W każdym (regularnym) punkcie brzegu $\partial \Omega$ możemy zdefiniować tzw. *wektor normalny n*. Według powszechnie przyjętej konwencji wektor normalny jest (*i*) prostopadły do powierzchni brzegowej w danym punkcie; (*ii*) ma długość 1, (|*n*|=1); (*iii*) jest skierowany na zewnątrz obszaru Ω (Rys. 1-1).

Rys. 1-1 Obszar (układ) Ω , jego brzeg $\partial \Omega$, przykładowy wektor normalny i dwa wektory styczne, τ_1 , τ_2 .

Mimo, że materia na poziomie podstawowym ma strukturę nieciągłą i ziarnistą, to jednak w skali makroskopowej bardzo dobrze sprawdza się model materii jako ośrodka ciągłego. Oznacza to, że na przykład możemy posługiwać się funkcją gęstości, $\rho(\mathbf{x})$, która określona jest dla każdego punktu $\mathbf{x} = (x, y, z) \in \Omega$ oraz zmienia się w sposób ciągły od punktu do punktu (matematycznie: funkcja $\rho: \Omega \rightarrow \mathbb{R}$ jest ciągła w swojej dziedzinie $\Omega \subseteq \mathbb{R}^3$), poza być może sytuacjami gdzie jest nieciągłość wynika z istnienia granicy faz (są to jednak zbiory objętościowej miary zero). Mamy więc pewne *pole* gęstości: do każdego punktu w przestrzeni przypisujemy gęstość, która może się zmieniać. Inne przykładowe wielkości, które możemy traktować w ten sam sposób to pole temperatury $T(\mathbf{x})$, prędkości $\upsilon(\mathbf{x})$, czy naprężeń $\sigma(\mathbf{x})$. Należy zatem raczej mówić o polu temperatury, polu prędkości i polu naprężeń. W przypadku gdy układ nie znajduje się w stanie stacjonarnym, to wielkości te mogą także zależeć od czasu, piszemy wtedy $T(\mathbf{x}, t)$, $\upsilon(\mathbf{x}, t)$, $\sigma(\mathbf{x}, t)$ itd.

Twierdzenie o dywergencji

Twierdzenie to jest pewną tożsamością całkową, która wiąże całkę z dowolnego pola wektorowego po brzegu danego obszaru z całką po wnętrzu tego obszaru. Formalnie tożsamość jest słuszna w dowolnym wymiarze, ale w praktyce najczęściej stosujemy ją w wymiarze dwa lub trzy. Co ciekawe w wymiarze jeden, czyli dla funkcji jednej zmiennej, $x \in \mathbb{R}$, sprowadza się ono do znanej tożsamości z rachunku różniczkowego i całkowego: dla dowolnej funkcji υ : [a, b] $\rightarrow \mathbb{R}$ klasy C¹ zachodzi

$$\int_{a}^{b} \upsilon'(x) dx = \upsilon(b) - \upsilon(a).$$
(1.1)

W tym przypadku Ω = (a, b), czyli jest to odcinek o końcach *a* i *b*, a brzeg to oczywiście dwa punkty, $\partial \Omega$ ={a, b}.

Uogólnienie na przypadek $\Omega \subseteq \mathbb{R}^3$ oraz dowolnego (odpowiednio regularnego) pola wektorowego $v: \Omega \to \mathbb{R}^3$ ma następująca postać

$$\int_{\Omega} \operatorname{div} \boldsymbol{\upsilon} \, d\boldsymbol{V} = \int_{\partial \Omega} \boldsymbol{\upsilon} \cdot \boldsymbol{n} \, d\boldsymbol{A}. \tag{1.2}$$

We wzorze tym $\int_{\Omega} (...) dV$ oznacza całkę objętościową po obszarze Ω , $\int_{\partial\Omega} (...) dA$ oznacza całkę powierzchniową po brzegu $\partial\Omega$, a div υ to tzw. *dywergencja* pola wektorowego υ , która w prostokątnym układzie współrzędnych wyraża się następująco

div
$$\boldsymbol{v} = \frac{\partial \upsilon_x}{\partial x} + \frac{\partial \upsilon_y}{\partial y} + \frac{\partial \upsilon_z}{\partial z},$$
 (1.3)

gdzie v_x , v_y , v_z są składowymi wektora v:

$$\boldsymbol{\upsilon} = [\upsilon_x, \upsilon_y, \upsilon_z] = \upsilon_x \hat{\boldsymbol{x}} + \upsilon_y \hat{\boldsymbol{y}} + \upsilon_z \hat{\boldsymbol{z}}. \tag{1.4}$$

Po prawej stronie tożsamości (1.2) występuje całka powierzchniowa z wyrażenia $n \cdot v$, gdzie kropka (·) oznacza iloczyn skalarny wektorów. Przypomnijmy, że dla dowolnych dwóch wektorów a, b definiujemy iloczyn skalarny następująco

$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \alpha, \tag{1.5}$$

gdzie |a| oznacza długość wektora a, natomiast α jest miarą kąta pomiędzy wektorami a i b.

Jest to wygodna definicja geometryczna pozwalająca łatwo interpretować iloczyn skalarny. Na przykład gdy wektory są niezerowe to zachodzi

$$\boldsymbol{a} \cdot \boldsymbol{b} = \mathbf{0} \Leftrightarrow \boldsymbol{a} \perp \boldsymbol{b} \tag{1.6}$$

gdyż $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \alpha = 0 \Leftrightarrow \cos \alpha = 0 \Leftrightarrow \alpha = \pi/2$ dla $\alpha \in [0, \pi]$. Z drugiej strony można pokazać, że w układzie kartezjańskim iloczyn wektorowy wyraża się następująco poprzez składowe wektorów: jeżeli $\mathbf{a} = [a_x, a_y, a_z], \mathbf{b} = [b_x, b_y, b_z]$, to

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_{x} \boldsymbol{b}_{x} + \boldsymbol{a}_{y} \boldsymbol{b}_{y} + \boldsymbol{a}_{z} \boldsymbol{b}_{z}. \tag{1.7}$$

<u>Uwaga</u>: Często spotyka się inne oznaczenia dywergencji: div $v = \nabla \cdot v$. Przy pomocy tej symboliki możemy twierdzenie o dywergencji zapisać tak

$$\int_{\Omega} \nabla \cdot \boldsymbol{\upsilon} \, d\boldsymbol{V} = \int_{\partial \Omega} \boldsymbol{\upsilon} \cdot \boldsymbol{n} \, d\boldsymbol{A}. \tag{1.8}$$

Matematyczny dowód tożsamości (1.2) jest zaawansowany, ale do naszych celów wystarczy sama znajomość tego wzoru. Tym nie mniej poniżej jest idea skąd ten wzór może pochodzić na przykładzie małego obszaru na płaszczyźnie, $\Omega \subset \mathbb{R}^2$, w formie prostokąta o bokach Δx i Δy . Na Rys. 1-2 jest pokazane pole wektorowe v(x, y) oraz jego składowe v_x i v_y . W tym przypadku brzeg jest zbudowany z boków prostokąta. Zauważmy, że na pionowych bokach $v_x(x,y)$ i $v_x(x+\Delta x,y)$ są składowymi prostopadłymi do brzegu, a składowe $v_y(x,y)$, $v_y(x,y+\Delta y)$ są prostopadłe do boków poziomych. Iloczyn skalarny $v \cdot n$ równy jest rzutowi wektora v na wektor normalny n, który to wektor jest zawsze skierowany na zewnątrz obszaru (co jest zaznaczone na Rys. 1-2). Tak więc na dolnym boku mamy oczywiści $v \cdot n = -v_y$. Podobnie $v \cdot n = -v_x$ dla lewego boku, a dla prawego $v \cdot n = v_x$.

Rys. 1-2 Element objętości ΔV z zaznaczonym polem wektorowym $v = [v_x, v_y]$ na poszczególnych "ścianach" (tutaj są to boki, bo przykład dotyczy pola wektorowego na płaszczyźnie). Pokazano także niektóre składowe pola v.

Zatem całka po brzegu $\partial\Omega$, który składa się z czterech boków, będzie sumą czterech całek

$$\int_{\partial\Omega} \boldsymbol{\upsilon} \cdot \boldsymbol{n} dA = \int_{\text{prawy}} \boldsymbol{\upsilon} \cdot \boldsymbol{n} dA + \int_{\text{lewy}} \boldsymbol{\upsilon} \cdot \boldsymbol{n} dA + \int_{\text{gorny}} \boldsymbol{\upsilon} \cdot \boldsymbol{n} dA + \int_{\text{dolny}} \boldsymbol{\upsilon} \cdot \boldsymbol{n} dA$$

$$\approx \upsilon_x (x + \Delta x, y) \Delta y - \upsilon_x (x, y) \Delta y + \upsilon_y (x, y + \Delta y) \Delta x - \upsilon_y (x, y) \Delta x \qquad (1.9)$$

$$= \left(\upsilon_x (x + \Delta x, y) - \upsilon_x (x, y)\right) \Delta y + \left(\upsilon_y (x, y + \Delta y) - \upsilon_y (x, y)\right) \Delta x.$$

Z drugiej strony całka z dywergencji po prostokącie Ω , który jest bardzo mały, może być przybliżono po prostu przez wartość dywergencji dowolnym punkcie prostokąta pomnożoną przez "objętość" prostokąta (czyli jego pole). Ponadto pochodne można przybliżyć przez ilorazy różnicowe:

$$\int_{\Omega} \operatorname{div} \boldsymbol{\upsilon} \, d\boldsymbol{V} \approx \operatorname{div} \boldsymbol{\upsilon}(\boldsymbol{x}, \boldsymbol{y}) \Delta \boldsymbol{V} = \operatorname{div} \boldsymbol{\upsilon}(\boldsymbol{x}, \boldsymbol{y}) \Delta \boldsymbol{x} \Delta \boldsymbol{y}$$

$$= \left(\frac{\partial \upsilon_{x}}{\partial \boldsymbol{x}} (\boldsymbol{x}, \boldsymbol{y}) + \frac{\partial \upsilon_{y}}{\partial \boldsymbol{y}} (\boldsymbol{x}, \boldsymbol{y}) \right) \Delta \boldsymbol{x} \Delta \boldsymbol{y} \qquad (1.10)$$

$$\approx \left(\frac{\upsilon_{x} (\boldsymbol{x} + \Delta \boldsymbol{x}, \boldsymbol{y}) - \upsilon_{x} (\boldsymbol{x}, \boldsymbol{y})}{\Delta \boldsymbol{x}} + \frac{\upsilon_{y} (\boldsymbol{x}, \boldsymbol{y} + \Delta \boldsymbol{y}) - \upsilon_{y} (\boldsymbol{x}, \boldsymbol{y})}{\Delta \boldsymbol{y}} \right) \Delta \boldsymbol{x} \Delta \boldsymbol{y} \qquad (1.20)$$

$$= \left(\upsilon_{x} (\boldsymbol{x} + \Delta \boldsymbol{x}, \boldsymbol{y}) - \upsilon_{x} (\boldsymbol{x}, \boldsymbol{y}) \right) \Delta \boldsymbol{y} + \left(\upsilon_{y} (\boldsymbol{x}, \boldsymbol{y}) - \upsilon_{y} (\boldsymbol{x}, \boldsymbol{y} + \Delta \boldsymbol{y}) \right) \Delta \boldsymbol{x}.$$

Porównując teraz ostanie wyrażenia w (1.9) i (1.10) widzimy, że zachodzi równość całek $\int_{\partial\Omega} \boldsymbol{v} \cdot \boldsymbol{n} dA$ oraz $\int_{\partial\Omega} \operatorname{div} \boldsymbol{v} dV$.

1.2. Prawa zachowania w ośrodku ciągłym

1.2.1. Bilans masy

Wykorzystamy teraz twierdzenie o dywergencji do uzasadnienia różniczkowej formy prawa zachowania masy. Rozważamy układ materialny ograniczony do pewnego obszaru przestrzeni Ω , w którym przemieszcza się substancja z prędkością v(x,t), która może się zmieniać od punktu do punktu i w czasie. Rozkład masy dany jest gęstością, ρ , która w ogólności również może zależeć od położenia i od czasu, $\rho = \rho(x,t)$. Sytuację tę ilustruje Rys. 1-3

Rys. 1-3 Obszar Ω , w którym ma miejsce transport masy opisany gęstością $\rho(\mathbf{x}, t)$.

Niech $A \subset \Omega$ będzie dowolnym fragmentem naszego układu. Wtedy całkowita masa zawarta w A jest całką objętościową z gęstości po tym obszarze

$$m_{A} = \int_{A} \rho(\mathbf{x}, t) dV, \qquad (1.11)$$

a szybkość zmiany tej masy w obszarze A to pochodna po czasie, dm_A/dt . Mamy więc

$$\frac{dm_{A}}{dt} = \frac{d}{dt} \int_{A} \rho(x,t) dV = \int_{A} \frac{\partial \rho}{\partial t}(x,t) dV.$$
(1.12)

Z drugiej strony zgodnie z prawem zachowania masy, całkowita jej ilość w obszarze A może się zmieniać tylko na skutek przepływu przez brzeg ∂A . Strumień tego przepływu czyli ilość masy na jednostkę powierzchni i na jednostkę czasu jest równa ρv . Tak więc całkowita ilość masy, która przepływa przez brzeg obszaru A na jednostkę czasu jest równa

$$\int_{\partial A} (\rho v) \cdot n \, dA. \tag{1.13}$$

Tak więc zmiana masy (w czasie) wyrażona przez (1.12) jest równa zmianie wyrażonej przez (1.13). Musi jeszcze sprawdzić znak. Zauważmy, że gdy ilość masy rośnie w obszarze A, to wtedy $dm_A/dt > 0$. Oznacza to, że całkowita ilość masy, która przeszła przez brzeg do wnętrza obszaru A musi być dodatnia. Jeżeli jednak gdzieś masa wchodzi do A, to w tym miejscu na brzegu wektor v jest skierowany do wnętrza, zatem $v \cdot n < 0$ gdyż zgodnie z definicja wektora normalnego jest on prostopadły do brzegu, ale skierowany na zewnątrz. Tak więc, aby całkowity strumień (1.13) był w tym przypadku dodatni musimy postawić przed nim minus. Podobnie będzie gdy masa będzie wychodzić z obszaru. Wtedy całka przez brzeg będzie dodatnia (bo teraz $v \cdot n > 0$), ale masy ubywa więc $dm_A/dt < 0$. Ale minus znów sprawi, że będzie zgodność. Podsumowując mamy (dla wygody, w dalszej części pominiemy argumenty x, t):

$$\int_{A} \frac{\partial \rho}{\partial t} dV = - \int_{\partial A} (\rho \upsilon) \cdot n \, dA. \tag{1.14}$$

Teraz na mocy twierdzenia o dywergencji (1.2) zamieniamy całkę po prawej stronie

$$\int_{A} \frac{\partial \rho}{\partial t} dV = -\int_{A} \operatorname{div}(\rho \upsilon) dV \Rightarrow \int_{A} \frac{\partial \rho}{\partial t} dV + \int_{A} \operatorname{div}(\rho \upsilon) dV = 0 \Rightarrow \int_{A} \left(\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \upsilon) \right) dV = 0$$

Otrzymaliśmy więc, że dla każdego fragmentu $A \subset \Omega$ całka jest równa zero:

$$\int_{A} \left(\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \upsilon) \right) dV = 0.$$
(1.15)

Oznacza to, że wyrażenie pod całką musi być równe zero. To prowadzi do różniczkowej formy prawa zachowania masy

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \upsilon) = 0. \tag{1.16}$$

Zauważmy, że w przypadku ruchu płynu nieściśliwego (większość cieczy w normalnych warunkach jest praktycznie nieściśliwa), możemy przyjąć, że gęstość jest po prostu stała. Wtedy oczywiście $\partial \rho / \partial t = 0$, zatem (1.16) daje div(ρv) = 0. Stałą gęstość ρ można wyłączyć przed symbol dywergencji (wynika to z definicji (1.3)), co ostatecznie prowadzi do warunku

$$\operatorname{div} \boldsymbol{\upsilon} = \mathbf{0}, \tag{1.17}$$

który musi spełniać pole prędkości przepływu płynu nieściśliwego.

1.2.2. Bilans dla składników mieszaniny

W poprzedniej sekcji rozważaliśmy ruch masy traktowanej jako całość. Natomiast w inżynierii chemicznej najczęściej mamy do czynienia z mieszaniną wielu składników, a zatem może nas interesować ruch i rozkład masy (np. liczby moli na jednostkę objętości) poszczególnych składników układu. Wyprowadzenie odpowiedniego równania różniczkowego na bilans każdego składnika będzie podobne do wyprowadzenia wzoru (1.16), ale musimy uwzględnić dwa nowe elementy: możliwość reakcji chemicznych i fizycznych¹ oraz fakt, że oprócz ruchu konwekcyjnego związanego z polem prędkości unoszenia w układzie, mogą też występować inne zjawiska transportu, na przykład dyfuzja. Zakładamy więc, że mamy układ, w którym występuje pewna liczba składników opisywanych stężeniami molowymi (mol/m³) $c_i(x,t)$ dla i=1,2,... Podstawowym pojęciem służącym do opisu transportu masy lub energii jest strumień, który będziemy oznaczać symbolem J z dodatkowymi indeksami, na przykład J_i dla *i*-tego składnika lub J_q dla energii (często w formie ciepła):

 \mathbf{J}_i jest wektorem, którego długść $|\mathbf{J}_i|$ jest równa ilości *i*-tego składnika, która

przemieściła się, przez jednostkową powierzchnię prostopadłą do J_i w jednostkowym (1.18) czasie. Zwrot jest wyznaczony przez kierunek ruchu skadnika.

Jeżeli ilość substancji mierzymy w molach, to naturalne jest mierzyć ją w molach także dla strumienia, i wtedy jednostką strumienie będzie mol/($m^2 \cdot s$). Dla strumienia energii J_q jednostką będzie J/($m^2 \cdot s$).

W układzie może występować pole prędkości unoszenia (konwekcji) $v(\mathbf{x}, t)$ (na przykład składniki są rozpuszczone w płynie, który przepływa w reaktorze chemicznym). Tak więc strumień unoszenia masy *i*-tego składnika przez pole prędkości v ma postać

$$c_i v.$$
 (1.19)

Ale jak już wspomnieliśmy mogą też wystąpić inne sposoby przemieszczania się składników. Oznaczmy ogólnie strumień wynikający z tych innych zjawisk symbolem J_i^{inne} . Tak więc całkowity strumień *i*-tego składnika jest sumą

$$\mathbf{J}_i = \mathbf{J}_i^{inne} + c_i \boldsymbol{\upsilon}. \tag{1.20}$$

Jeżeli chodzi o reakcje fizyko-chemiczne, to prowadzą one do zmiany stężeń składników w objętości. Zjawisko to opiszemy następującą funkcją ("człon reakcyjny"):

$$R_i = zmiana ilości i-tego składnika na jednostkę objętości i jednostkę czasu, (1.21)$$

przy czym *ilość składnika* najlepiej jest wyrażać przy pomocy tej samej jednostki, której używamy do *ilości* w definicji stężenia. Na ogół jest to liczba moli, wtedy jednostką członu reakcyjnego *R_i* będzie mol/(m³·s). Oczywiście konkretna matematyczna postać funkcji (1.21) zależy od kinetyki reakcji, w których bierze udział *i*-ty składnik.

Możemy teraz przedstawić bilans ilości dla każdego składnika. Niech A $\subseteq \Omega$ będzie dowolnym fragmentem układu, wtedy:

¹ Reakcje chemiczne są to przekształcenia materii zawsze związane są przebudową wiązań chemicznych, zatem zmienia się skład i stężenie związków chemicznych układu. Reakcje fizyczne nie zależą bezpośrednio od wiązań chemicznych, na przykład rozpad radioaktywny. Reakcjami fizycznymi są też niektóre formy adsorpcji.

- $\frac{d}{dt}\int_{A}c_{i}(x,t)dV = \text{ szybkość zmiany ilości }i\text{-tego składnika w obszarze }A;$
- $-\int_{\partial A} \mathbf{J}_i \cdot \mathbf{n} dA = \text{całkowita ilość } i\text{-tego składnika, przepływająca przez brzeg (gdy masa netto opuszcza obszar A, to całka jest dodatnia, ale znak minus powoduje, że wyrażenie jest ujemne; podobnie gdy$ *i*-ty składnik*wchodzi*do obszaru A całka będzie ujemna, ale minus da wyrażenie dodatnie);²
- $\int_{A} R_{i} dV =$ zmiana na jednostkę czasu całkowitej ilości składnika w obszarze A na skutek reakcji chemicznych lub fizycznych.

Mamy więc całkowy bilans dla i-tego składnika:

$$\frac{d}{dt}\int_{A}c_{i}dV = -\int_{\partial A}\mathbf{J}_{i}\cdot \mathbf{n}dA + \int_{A}R_{i}dV. \qquad (1.22)$$

Pochodną po czasie d/dt możemy umieścić pod znakiem całki (bo obszar A nie zależy od czasu), a pierwszy składnik po prawej stronie zamieniamy zgodnie z twierdzeniem o dywergencji (we wzorze (1.2) w miejsce v wstawiamy J_i)

$$\frac{d}{dt}\int_{A}c_{i}dV = \int_{A}\frac{\partial c_{i}}{\partial t}dV, \quad \int_{\partial A}\mathbf{J}_{i}\cdot \boldsymbol{n}\,dA = \int_{A}\operatorname{div}\mathbf{J}_{i}\,dA, \quad (1.23)$$

zatem (1.22) przekształcamy następująco

$$\int_{A} \frac{\partial c_{i}}{\partial t} dV = -\int_{A} \operatorname{div} \mathbf{J}_{i} dV + \int_{A} R_{i} dV \implies \int_{A} \frac{\partial c_{i}}{\partial t} dV + \int_{A} \operatorname{div} \mathbf{J}_{i} dV - \int_{A} R_{i} dV = 0$$
(1.24)

skąd $\int_{A} \left(\frac{\partial c_i}{\partial t} + \operatorname{div} \mathbf{J}_i - \mathbf{R}_i \right) d\mathbf{V} = 0$. Ponieważ całka jest po dowolnie wybranym fragmencie A układu, stąd

z ostatniej równości wnosimy, że funkcja podcałkowa musi być wszędzie równa zero

$$\frac{\partial c_i}{\partial t} + \operatorname{div} \mathbf{J}_i - \mathbf{R}_i = \mathbf{0}, \tag{1.25}$$

co najczęściej jest zapisywane jako

$$\frac{\partial c_i}{\partial t} + \operatorname{div} \mathbf{J}_i = R_i \quad d|a \ i = 1, 2, \dots$$
(1.26)

Aby powyższy układ równań był kompletny musimy oczywiście znać $\mathbf{J}_i = \mathbf{J}_i^{inne} + c_i \boldsymbol{v}$ oraz reakcje R_i . Pole prędkości \boldsymbol{v} może być zadane jako znany (np. paraboliczny) profil prędkości przepływu lub wyliczamy je z równań mechaniki płynów. Uwzględnienie innych zjawisk transportu (\mathbf{J}_i^{inne}) jest szerokim zagadnieniem. Na przykład jeżeli należy uwzględnić dyfuzję *i*-tego składnika, to strumień pochodzący od dyfuzji można wyrazić w oparciu o prawo Ficka:

$$\mathbf{J}_{i}^{inne} = \mathbf{J}_{i}^{dyf} = -D_{i}\nabla c_{i}, \qquad (1.27)$$

² Zauważmy, że fakt iż całka $\int_{A} \mathbf{J}_{i} \cdot \mathbf{n} dV$ jest dodatnia, gdy masa (netto) opuszcza fragment A jest konsekwencją konwencji, że wektor normalny \mathbf{n} na brzegu ∂A jest skierowany na zewnątrz!

gdzie $D_i > 0$ to współczynnik dyfuzji *i*-tego składnika (m²/s), a ∇c_i to gradient stężenia. Gradient dowolnej funkcji skalarnej f(x,y,z) w układzie prostokątnym jest wektorem, którego składowymi są pochodne cząstkowe:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right].$$
(1.28)

1.2.3. Transport ciepła (bilans energii wewnętrznej)

Energia może być transportowana na różne sposoby. Może to być na przykład promieniowanie elektromagnetyczne, konwekcja lub transport na sposób ciepła. Sformułowanie "transport energii wewnętrznej na sposób ciepła" jest bardzo niewygodne, więc mówimy po prostu o "przepływie ciepła", choć z termodynamiki wiemy, że nie ma takiego pojęcia jak ciepło zawarte w ciele (podobnie jak nie ma "pracy zawartej w układzie"). Jest tylko energia wewnętrzna, która może być zmieniana na różne sposoby. Przepływ ciepła jest takim sposobem transportu energii wewnętrznej, który na poziomie molekularnym polega na przekazywaniu energii kinetycznej cząstek w drodze zderzeń sprężystych.

Rozważamy ośrodek skondensowany (ciecz, ciało stałe), który może przewodzić ciepło. Przyjmiemy, że gęstość ośrodka, ρ , oraz ciepło właściwe, c_w , w interesującym nas zakresie temperatury są od niej niezależne. Ale nie muszą być stałe w przestrzeni! Zatem w ogólności $\rho = \rho(x)$, $c_w = c_w(x)$. Oznacza to, że jeżeli w małym elemencie objętości ΔV o masie $m = \rho \Delta V$ temperatura zmieni się o ΔT , to zmiana energii wewnętrznej tej masy wyniesie $\Delta U = c_w m \Delta T = c_w \rho \Delta V \Delta T$. Oczywiście dla dowolnego obszaru A ośrodka musimy scałkować po objętości A to wyrażenie, gdyż ρ , c_w , ΔT mogą zależeć od położenia

$$\Delta U_{A} = \int_{A} \rho c_{w} \Delta T \, dV. \tag{1.29}$$

Jeżeli początkowy rozkład temperatury oznaczymy przez $T_0(\mathbf{x})$, to ponieważ $\Delta T(\mathbf{x},t) = T(\mathbf{x},t) - T_0(\mathbf{x})$, więc zmiana energii wewnętrznej w obszarze A wyniesie

$$\Delta U_{A}(t) = \int_{A} \rho(x) c_{w}(x) (T(x,t) - T_{0}(x)) dV(x), \qquad (1.30)$$

gdzie wyraźnie zaznaczono od jakich zmiennych zależą występujące wielkości. Szybkość zmiany energii wewnętrznej w wybranym obszarze *A* jest pochodną po czasie wyrażenia (1.30)

$$\frac{d}{dt}\Delta U_{A} = \frac{d}{dt}\int_{A} \rho(x)c_{w}(x)(T(x,t) - T_{0}(x))dV(x) = \int_{A} \frac{\partial}{\partial t} \left[\rho(x)c_{w}(x)(T(x,t) - T_{0}(x))\right]dV(x)$$

$$= \int_{A} \rho(x)c_{w}(x)\frac{\partial}{\partial t}(T(x,t) - T_{0}(x))dV(x) = \int_{A} \rho(x)c_{w}(x)\left(\frac{\partial T}{\partial t}(x,t) - 0\right)dV(x)$$

$$= \int_{A} \rho(x)c_{w}(x)\frac{\partial T}{\partial t}(x,t)dV(x),$$
(1.31)

gdzie wykorzystaliśmy fakt, że ρ , c_w , oraz T_0 nie zależą od czasu. Mamy więc (dla uproszczenia pomijamy w zapisie argumenty x, t)

$$\frac{d}{dt}\Delta U_{A} = \int_{A} \rho c_{w} \frac{\partial T}{\partial t} dV.$$
(1.32)

Jeżeli J_q oznacza strumień "ciepła", (J/(m²·s)), to ilość energii przechodząca przez brzeg ∂A na jednostkę czasu wynosi

$$-\int_{\partial A} \mathbf{J}_q \cdot \boldsymbol{n} \, dA, \tag{1.33}$$

gdzie jak zwykle znak minus wynika z tego, że chcemy aby "ciepło" wchodzące do obszaru było dodatnie. Energia wewnętrzna może być także zmieniana w objętości na skutek reakcji chemicznych, fizycznych (na przykład rozpad radioaktywny) czy podgrzewania (na przykład przepływ prądu elektrycznego – spirala grzejna). Zjawiska te opiszemy członem źródłowym R_q (J/(m³·s)), którego sens jest taki:

$$R_q \Delta V =$$
zmiana energii wewnętrznej w objętości ΔV na jednostkę czasu. (1.34)

Tak więc szybkość zmiany w czasie całkowitej energii wewnętrznej w wybranym obszarze A naszego ośrodka na skutek reakcji (źródeł) objętościowych wynosi

$$\int_{A} R_q \, dV. \tag{1.35}$$

Łącząc teraz (1.29), (1.30) i (1.32) otrzymujemy bilans

$$\frac{d}{dt}\Delta U_{A} = \int_{A} \rho c_{w} \frac{\partial T}{\partial t} dV = -\int_{\partial A} \mathbf{J}_{q} \cdot \mathbf{n} dA + \int_{A} R_{q} dV. \qquad (1.36)$$

Korzystamy teraz z twierdzenia o dywergencji (1.2), gdzie w miejsce pola wektorowego v wstawiamy \mathbf{J}_q co daje $\int_{\Delta a} \mathbf{J}_q \cdot \mathbf{n} dA = \int_{\Delta} \operatorname{div} \mathbf{J}_q dV$, a powyższą równość przekształcamy następująco

$$\int_{A} \rho c_{w} \frac{\partial T}{\partial t} dV = -\int_{\partial A} \mathbf{J}_{q} \cdot \mathbf{n} dA + \int_{A} R_{q} dV = -\int_{A} \operatorname{div} \mathbf{J}_{q} dV + \int_{A} R_{q} dV \Rightarrow$$

$$\int_{A} \rho c_{w} \frac{\partial T}{\partial t} dV + \int_{A} \operatorname{div} \mathbf{J}_{q} dV - \int_{A} R_{q} dV = 0 \Rightarrow \int_{A} \left(\rho c_{w} \frac{\partial T}{\partial t} + \operatorname{div} \mathbf{J}_{q} - R_{q} \right) dV = 0.$$
(1.37)

Ostatnia tożsamość zachodzi dla dowolnego obszaru A zawartego w ośrodku, więc funkcja podcałkowa musi być wszędzie równa zero. W ten sposób otrzymujemy prawo zachowania energii wewnętrznej w postaci różniczkowej

$$\rho c_{w} \frac{\partial T}{\partial t} + \operatorname{div} \mathbf{J}_{q} - \mathbf{R}_{q} = \mathbf{0}, \qquad (1.38)$$

co również zapisywane jest w formie

$$\rho c_{w} \frac{\partial T}{\partial t} + \operatorname{div} \mathbf{J}_{q} = R_{q}.$$
(1.39)

Równanie to jest podstawą do modelowania zagadnień, gdzie występuje transport ciepła. Pozwala ono (po uzupełnieniu o wyrażenie na strumień i człon reakcyjny oraz określeniu warunków brzegowych i początkowych) obliczać rozkłady temperatury zarówno w stanie stacjonarnym jaki i w układzie dynamicznym.

1.2.4. Mechanika płynów (bilans pędu)

W ośrodku ciągłym siły działające na każdy (makroskopowy) fragment ośrodka możemy podzielić na dwie kategorie:

- siły zewnętrzne, zwane też siłami masowymi (lub objętościowymi) takie jak grawitacja, siły bezwładności (pseudo siły, siły pozorne), siły magnetyczne, które przenikają ciało i działają na każdy element objętości;
- wewnętrzne siły naprężeń, które działają na dowolny wybrany fragment ośrodka poprzez brzeg.

Płyn idealny (w sensie mechaniki płynów) jest zdefiniowany przez następującą własność:

dla dowolnego ruchu płynu istnieje skalarna funkcja $p(\mathbf{x}, t)$ zwana *ciśnieniem*, taka że jeśli *S* jest dowolną powierzchnią w płynie, to siły naprężeń działające przez tę powierzchnię na jednostkę powierzchni mają postać $p(\mathbf{x}, t)\mathbf{n}$ dla $\mathbf{x} \in S$, gdzie \mathbf{n} jest wektorem normalnym do powierzchni *S*.

Zatem w przypadku płynu idealnego, naprężenia wewnętrzne maja szczególną postać: siła działająca przez S na jednostką powierzchni = p(x, t)n, co jest zilustrowane na Rys. 1-4.

Rys. 1-4 Siły ciśnienia działające na element powierzchni w płynie. Symbol n oznacza wektor normalny.

Brak sił stycznych wewnątrz płynu oznacza, że nie ma sposobu, aby pojawiły się wiry, ani, jeśli były na początku, to żeby się zatrzymały. Płyn idealny może być zbyt dużym uproszczeniem, gdyż w wielu fizycznych sytuacjach wiry występują i wtedy płyn idealny nie będzie adekwatny do opisu takich zjawisk.

Jeżeli W jest jakimś wybranym obszarem w naszym płynie w pewnej chwili t (sam obszar W jest nieruchomy), to możemy stwierdzić, że zgodnie z założeniem idealności płynu siły nieobjętościowe działająca na masę zawartą w W są równe

$$\mathbf{S}_{\partial W} = \{sila \ dzialająca \ na \ W \ poprzez \ brzeg \ S = \partial W\} = -\int_{\partial W} p(\mathbf{x}, t) \mathbf{n} \ dA.$$
(1.40)

Jeżeli **e** jest dowolnym <u>ustalonym</u> wektorem w przestrzeni, to dzięki twierdzeniu o dywergencji możemy przeprowadzić poniższy rachunek (kropka "·"oznacza iloczyn skalarny)

$$\boldsymbol{e} \cdot \boldsymbol{S}_{\partial W} = -\int_{\partial W} \boldsymbol{p} \boldsymbol{e} \cdot \boldsymbol{n} dA = -\int_{W} \operatorname{div}(\boldsymbol{p} \boldsymbol{e}) dV = -\int_{W} \nabla \boldsymbol{p} \cdot \boldsymbol{e} \, dV = \boldsymbol{e} \cdot (-\int_{W} \nabla \boldsymbol{p} \, dV)$$
(1.41)

stąd (wektor e jest dowony)

$$S_{\partial W} = -\int_{W} \nabla p \, dV. \tag{1.42}$$

Oznacza to, że w płynie idealnym całkowita siła wewnętrzna działająca na płyn zawarty w objętości W jest równa całce po W z gradientu ciśnienia. Jeżeli f(x,t) oznacza pole sił masowych (dokładnej – gęstości sił masowych), to całkowita siła masowa działająca na element W wynosi

$$\mathbf{F}_{b,W} = \{\text{si} \text{ia} \text{ masowa dzia} \text{ia} \text{ia} \text{ja} \text{ca na } W \} = \int_{W} \rho \mathbf{f} \, dV.$$
(1.43)

Zatem w przypadku płynu idealnego całkowita siła **F**_W działająca na wybrany i ustalony obszar płynu W jest sumą

$$\mathbf{F}_{b,W} + \mathbf{S}_{\partial W} = \int_{W} (-\nabla p) dV + \int_{W} \rho \mathbf{f} \, dV = \int_{W} (-\nabla p + \rho \mathbf{f}) dV$$
(1.44)

czyli $\mathbf{F}_{W} = \int_{W} (-\nabla p + \rho \mathbf{f}) dV$. Oznacza to, że

siła działająca na jednostkę objętości (gęstość sił) = $-\nabla p + \rho \mathbf{f}$

Teraz zastosujemy II zasadę dynamiki Newtona do elementu płynu zawartego w W:

siła = masa × przyspieszenie

Wyobrażamy sobie tzw. *element płynu* (bardzo mały obszar, w którym praktycznie gęstość, siły, prędkość są takie same, ale mający jednak charakter makroskopowy) i przypisujemy mu położenie $\mathbf{r}(t)$, które jest oczywiście funkcją czasu. Inaczej mówiąc $\mathbf{r}(t)$ opisuje ruch wybranego elementu ("cząstki") płynu. Z samej definicji pola prędkości $v(\mathbf{r},t)$ mamy tożsamość

$$\frac{dr}{dt}(t) = \upsilon(t, r(t)), \tag{1.45}$$

gdyż prędkość "cząstki" to pochodna po czasie wektora położenia. Przyspieszenie $\mathbf{a}=d^2\mathbf{r}/dt^2$, zatem

$$a(t) = \frac{d^2 r}{dt^2}(t) = \frac{d}{dt} \upsilon(t, r(t)).$$
(1.46)

Stosując teraz twierdzenie o pochodnej funkcji złożonej dla funkcji wielu zmiennych można pokazać:

$$a(t) = \frac{d}{dt}\upsilon(t, r(t)) = \frac{\partial \upsilon}{\partial t} + (\upsilon \cdot \nabla)\upsilon, \qquad (1.47)$$

gdzie

$$\boldsymbol{\upsilon} = [\upsilon_x, \upsilon_y, \upsilon_y],$$
$$\boldsymbol{\upsilon} \cdot \nabla = \upsilon_x \frac{\partial}{\partial x} + \upsilon_y \frac{\partial}{\partial y} + \upsilon_z \frac{\partial}{\partial z}.$$

$$(\boldsymbol{\nu}\cdot\nabla)\boldsymbol{\nu} = \left[(\boldsymbol{\nu}\cdot\nabla)\boldsymbol{\nu}_{x}, (\boldsymbol{\nu}\cdot\nabla)\boldsymbol{\nu}_{y}, (\boldsymbol{\nu}\cdot\nabla)\boldsymbol{\nu}_{z} \right]$$
$$= \left[(\boldsymbol{\nu}_{x}\frac{\partial}{\partial x} + \boldsymbol{\nu}_{y}\frac{\partial}{\partial y} + \boldsymbol{\nu}_{z}\frac{\partial}{\partial z})\boldsymbol{\nu}_{x}, (\boldsymbol{\nu}_{x}\frac{\partial}{\partial x} + \boldsymbol{\nu}_{y}\frac{\partial}{\partial y} + \boldsymbol{\nu}_{z}\frac{\partial}{\partial z})\boldsymbol{\nu}_{y}, (\boldsymbol{\nu}_{x}\frac{\partial}{\partial x} + \boldsymbol{\nu}_{y}\frac{\partial}{\partial y} + \boldsymbol{\nu}_{z}\frac{\partial}{\partial z})\boldsymbol{\nu}_{z} \right]$$
$$= \left[\boldsymbol{\nu}_{x}\frac{\partial\boldsymbol{\nu}_{x}}{\partial x} + \boldsymbol{\nu}_{y}\frac{\partial\boldsymbol{\nu}_{x}}{\partial y} + \boldsymbol{\nu}_{z}\frac{\partial\boldsymbol{\nu}_{x}}{\partial z}, \boldsymbol{\nu}_{x}\frac{\partial\boldsymbol{\nu}_{y}}{\partial x} + \boldsymbol{\nu}_{y}\frac{\partial\boldsymbol{\nu}_{y}}{\partial y} + \boldsymbol{\nu}_{z}\frac{\partial\boldsymbol{\nu}_{z}}{\partial z}, \boldsymbol{\nu}_{x}\frac{\partial\boldsymbol{\nu}_{z}}{\partial z} + \boldsymbol{\nu}_{z}\frac{\partial\boldsymbol{\nu}_{z}}{\partial z} \right]$$

Podsumujmy, korzystając z następujących zależności:

siła = masa × przyspieszenie,
siła na jednostkę objętości =
$$-\nabla p + \rho \mathbf{f}$$
, (1.48)
przyspieszenie = $a = \frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v}$,

otrzymujemy

$$\rho\left(\frac{\partial \boldsymbol{\upsilon}}{\partial t} + \boldsymbol{\upsilon} \cdot \nabla \boldsymbol{\upsilon}\right) = -\nabla \boldsymbol{\rho} + \rho \mathbf{f}.$$
(1.49)

Powyższe równanie zwane jest *równaniem Eulera dla płynu idealnego*.³ W istocie jest to równanie zachowania pędu dla ośrodka ciągłego, który spełnia założenie płynu idealnego.

1.3. Równania konstytutywne

Równania bilansu masy, składnika mieszaniny, a także pędu i energii nie są wystarczające, aby opisać układ, gdyż występują w nich wielkości, na przykład strumień składnika, człony reakcyjne czy pole prędkości płynu, które są zadane tylko w postaci ogólnej. Po prostu liczba niewiadomych funkcji jest większa niż liczba równań. Dlatego musimy wprowadzić jeszcze szczegółowe zależności, które powiążą na przykład strumień składnika J_i z jego stężeniem c_i , strumień ciepła J_q z temperaturą T, czy tensor naprężeń σ z odkształceniem lub gradientem odkształcenia. Brakujące równania nazywamy równaniami konstytutywne charakteryzują konkretny materiał lub proces. Wybrane równania konstytutywne zostały przedstawione poniżej.

1.3.1. Równania konstytutywne dla bilansu składnika

W równaniu bilansu dla składnika (1.22) należy podać konkretne wyrażenia na strumień dyfuzyjny J_i oraz na człon źródłowy R_i .

Dyfuzja (roztwór idealny lub rozcieńczony). Jeżeli założymy, że ośrodek możemy traktować jako roztwór idealny lub rozcieńczony, wtedy strumień dyfuzyjny *i*-tego składnika można wyrazić jako gradient stężenia tego składnika. Jest to I prawa Ficka:

$$\mathbf{J}_{i}^{dyf} = -D_{i}\nabla \boldsymbol{c}_{i}, \qquad (1.50)$$

³ W literaturze często mówi się o "*równaniach Eulera*", gdyż równanie (1.49) jest równaniem wektorowym, gdzie niewiadome pole prędkości $v = [v_x, v_y, v_z]$ zawiera trzy składowe. Po rozpisaniu tego równania na składowe otrzymamy układ trzech równań skalarnych.

gdzie $D_i > 0$ jest współczynnikiem dyfuzji *i*-tego składnika. Jeżeli w układzie nie występują reakcje (R_i = 0), to równanie bilansu *i*-tego składnika przyjmuje wtedy postać (II prawo Ficka):

$$\frac{\partial c_i}{\partial t} = \operatorname{div}(D_i \nabla c_i). \tag{1.51}$$

Gdy dyfundujące składniki znajdują się w płynie, który porusza się z prędkością υ, to strumień całkowity będzie sumą strumienia dyfuzyjnego (1.50) oraz strumienia konwekcji, *ci*υ:

$$\mathbf{J}_{i} = \mathbf{J}_{i}^{dvf} + c\boldsymbol{\upsilon} = -D_{i}\nabla c_{i} + c\boldsymbol{\upsilon}.$$
(1.52)

Jeżeli ciecz jest nieściśliwa to div $\upsilon = 0$. Łatwo sprawdzić, że dla dowolnej funkcji skalarnej (c) i wektorowej (υ), zachodzi div($c\upsilon$) = $\upsilon \cdot \nabla c + c \operatorname{div} \upsilon$. Zatem dla cieczy nieściśliwej div($c\upsilon$) = $\upsilon \cdot \nabla c$. Wtedy prawo zachowania (1.26) przyjmuje postać *równania dyfuzji z adwekcją*:

$$\frac{\partial \boldsymbol{c}_i}{\partial t} + \boldsymbol{\upsilon} \cdot \nabla \boldsymbol{c}_i = \operatorname{div}(\boldsymbol{D}_i \nabla \boldsymbol{c}_i), \qquad (1.53)$$

gdyż div $\mathbf{J}_i = \operatorname{div} (\mathbf{J}_i^{\operatorname{dyf}} + c_i \upsilon) = \operatorname{div} (\mathbf{J}_i^{\operatorname{dyf}}) + \operatorname{div} (c_i \upsilon) = \operatorname{div} (-D_i \nabla c_i) + \upsilon \cdot \nabla c_i$. Oczywiście gdy występują reakcje, to wystarczy tylko dodać człon reakcyjny

$$\frac{\partial c_i}{\partial t} + \boldsymbol{\upsilon} \cdot \nabla c_i = \operatorname{div}(D_i \nabla c_i) + R_i.$$
(1.54)

Dyfuzja (opis termodynamiczny). W uproszczeniu można zdefiniować dyfuzję jako przepływ masy wywołanym gradientem stężenia (w warunkach izotermicznych). Zatem jest to przemieszczanie się substancji z obszarów o wyższym stężeniu do obszarów o niższym stężeniu. Bardziej fundamentalny opis dyfuzji opiera się na obserwacji, że wspomniany ruch substancji jest spowodowany gradientem energii swobodnej Gibbsa na mol *i*-tego składnika czyli potencjału chemicznego μ_i . Oznacza to, że lokalnie strumień dąży do obniżenia energii swobodnej Gibbsa w warunkach stałej temperatury i ciśnienia. O ile w układzie jednoskładnikowym faktycznie dyfunduje on w kierunku mniejszego stężenia, to w przypadku układów wieloskładnikowych strumień wybranego składnika *i* może dyfundować w kierunku większego stężenia tego składnika! Zjawisko to nazywane jest "*dyfuzją pod górę"* (ang. *uphill diffusion*).

Termodynamiczna definicja strumienia dyfuzji jest następująca

$$\mathbf{J}_{i}^{dyf} = -L_{i} \frac{1}{T} \nabla \mu_{i}, \qquad (1.55)$$

gdzie μ_i to potencjał chemiczny *i*-tego składnika, T to temperatura bezwzględna, a L_i to tzw. liniowy współczynnik fenomenologiczny. W idealnych mieszaninach składników niejonowych potencjał chemiczny ma szczególnie prostą postać

$$\mu_i = \mu_i^{\circ} + RT \ln c_i, \qquad (1.56)$$

gdzie $\mu_i^{\Phi} = const$ jest standardowym potencjałem chemicznym (nie zależy od położenia), a *R* to uniwersalna stała gazowa. We wzorze (1.56) c_i oznacza stężenie molowe.⁴ Mamy więc $\nabla \mu_i = RT \nabla \ln c_i = RT \frac{1}{c_i} \nabla c_i$, co po wstawieniu do (1.54) daje

⁴ Stężenie molowe w układzie SI ma jednostkę mol/m³. W praktyczne często stosuje się mol/dm³. Ponadto, ściśle rzecz ujmując wzór (1.56) nie jest poprawnie zapisany, gdyż pod logarytmem musi być wielkość bezwymiarowa.

$$\mathbf{J}_{i}^{dyf} = -L_{i} \frac{1}{T} \nabla \mu_{i} = -\frac{L_{i}}{T} RT \frac{1}{c_{i}} \nabla c_{i} = -\frac{L_{i}R}{c_{i}} \nabla c_{i}.$$
(1.57)

Jeżeli oznaczymy $D_i = L_i R / c_i$, to otrzymamy znane wyrażenie na strumień dyfuzyjny (I prawo Ficka):

$$\mathbf{J}_{i}^{dyf} = -\mathbf{D}_{i} \nabla \mathbf{C}_{i}. \tag{1.58}$$

Transport jonów w elektrolicie (elektrodyfuzja). W roztworze elektrolitu występują swobodne jony. W przypadku transportu jonów w roztworze elektrolitu bodźce termodynamiczne są wynikiem gradientu potencjału chemicznego oraz elektrycznego φ . Musimy zatem do potencjału chemicznego dodać energię (na mol) ładunku w polu elektrycznym. W ten sposób uzyskujemy tzw. *potencjał elektrochemiczny i*-tego jonu w elektrolicie:

$$\tilde{\mu}_i = \mu_i + z_i F \varphi, \tag{1.59}$$

gdzie z_i jest ładunkiem jonu, a F = 96485 C·mol⁻¹ stałą Faradaya. Analogicznie jak dla dyfuzji składników niejonowych (1.54) możemy przyjąć, że strumień jonów jest spowodowany gradientem potencjału

elektrochemicznego, $\mathbf{J}_i = -L_i \frac{1}{T} \nabla \tilde{\mu}_i$. Ponieważ

$$\nabla \tilde{\mu}_i = \nabla \mu_i + \nabla (z_i F \varphi), \tag{1.60}$$

więc

$$\mathbf{J}_{i} = -L_{i} \frac{1}{T} \nabla \tilde{\mu}_{i} = -\frac{L_{i}}{T} \left(\nabla \mu_{i} + \nabla (\boldsymbol{z}_{i} \boldsymbol{F} \boldsymbol{\varphi}) \right) = -\frac{L_{i}}{T} \nabla \mu_{i} - \frac{L_{i} \boldsymbol{z}_{i} \boldsymbol{F}}{T} \nabla \boldsymbol{\varphi}.$$
(1.61)

Jeżeli założymy, że roztwór jest rozcieńczony lub charakter odziaływań jonów z ośrodkiem i z innymi składnikami jest taki, że można przyjąć następującą postać potencjału elektrochemicznego

$$\tilde{\mu}_i = \mu_i^{\bullet} + RT \ln c_i + z_i F \varphi, \qquad (1.62)$$

możemy dalej przekształcić (1.59)

$$\mathbf{J}_{i} = -\frac{L_{i}}{T} \nabla \mu_{i} - \frac{L_{i} z_{i} F}{T} \nabla \varphi = -\frac{L_{i} RT}{T} \frac{1}{c_{i}} \nabla c_{i} - \frac{L_{i} z_{i} F}{T} \nabla \varphi$$
$$= -L_{i} R \frac{1}{c_{i}} \nabla c_{i} - \frac{L_{i} z_{i} F}{T} \nabla \varphi = -\frac{D_{i} c_{i}}{R} R \frac{1}{c_{i}} \nabla c_{i} - \frac{D_{i} c_{i}}{R} \frac{z_{i} F}{T} \nabla \varphi$$
$$= -D_{i} \nabla c_{i} - D_{i} \frac{z_{i} F}{RT} c_{i} \nabla \varphi.$$

Podsumujmy: w roztworach elektrolitów strumień jonów może być w pewnych sytuacjach opisany następującym równaniem konstytutywnym

$$\mathbf{J}_{i} = -D_{i}\nabla c_{i} - D_{i}\frac{z_{i}F}{RT}c_{i}\nabla \varphi.$$
(1.63)

Powyższe wyrażenie na strumień jonów znane jest w literaturze elektrochemicznej jako równanie Nernsta–Plancka. Można zauważyć, że z zasadzie opisuje on strumień jonów rozbity na dwa składniki:

Poprawna forma to $\mu_i = \mu_i^{\bullet} + RT \ln(c_i / c^0)$, gdzie c^0 jest stężeniem standardowym, na przykład $c^0 = 1 \text{ mol}/\text{m}^3$ gdy c_i wyrażamy w mol/m³. Ale dla dalszych rozważań nie będzie to istotne i będziemy pisać jak w (1.56).

część *dyfuzyjną* ($-D_i \nabla c_i$) oraz tzw. część *migracyjną* ($-D_i z_i \frac{F}{RT} c_i \nabla \phi$). W elektrochemii "migracja" (czasami – "elektromigracja") oznacza ruch jonów pod wpływem pola elektrycznego.

1.3.2. Równania konstytutywne dla bilansu pędu

W rozdziale 1.2.4 omówiono równanie bilansu pędu dla płynu idealnego. Teraz przejdziemy do bardziej ogólnego opisu płynu niż płyn idealny – płynu rzeczywistego. Zauważmy, że w płynie idealnym nie występuje tarcie wewnętrzne jednych fragmentów poruszającego się płynu względem innych. Rzeczywiste płyny posiadają jednak własność, którą określamy jako *lepkość*. Na poziomie mikroskopowym zjawisko lepkości związane jest z przekazywaniem pędu molekuł pomiędzy równolegle poruszającymi się warstwami płynu.

Spójrzmy na Rys. 1-5, gdzie dwie warstwy B_1 i B_2 przemieszczają się wzdłuż wspólnej płaszczyzny S. Szybsze cząsteczki ($v_2 > v_1$) z warstwy (B_2) dyfundują przez S i nadają pęd płynowi (B_1), a podobnie wolniejsze cząsteczki, które na rysunku są poniżej S dyfundują przez S, aby spowolnić płyn powyżej S. W ten sposób powstaje lepkość. To jest wyjaśnienie jakościowe lepkości. Teraz opiszemy jak można zmierzyć tę wielkość.

Rys. 1-5 Schematyczny rysunek przedstawiający pojęcie lepkości w płynie.

Lepkość dynamiczna μ (oznaczana też symbolem η) płynu opisuje jego opór wobec przepływów ścinających. Na Rys. 1-6 prędkość górnej płyty jest równoległa do osi *x*. Pewna siła zewnętrzna *F* jest wymagana, aby utrzymać górną płytę w ruchu ze stałą prędkością v. Zatem na samym spodzie prędkość spada do zera, a na górze wynosi *v*. Można przyjąć, że dla niedużej grubości rozważanej warstwy, ℓ , prędkość zmienia się liniowo z odległością ("wysokością") *y*. Jeżeli *A* oznacza pole powierzchni na która działa siła *F*, to naprężenie ścinające wynosi $\tau = F/A$. Chodzi teraz o to, że pomiędzy tym naprężeniem ścinającym a gradientem prędkości, v/I, jest zależność liniowa, $\tau \sim v/I$. Współczynnik proporcjonalności definiujemy jako współczynnik lepkości dynamicznej:

$$\tau = \frac{F}{A} = \mu \frac{\partial \upsilon}{\partial y}.$$
(1.64)

Rys. 1-6. Ilustracja przedstawiająco definicję lepkości dynamicznej μ .

Wracamy teraz do rozważań ogólnych. Zamiast założenia, płyn idealny:

siła działająca na S na jednostkę powierzchni = -p(r,t)n,

gdzie *n* jest wektorem normalnym do *S*, przyjmujemy teraz że dla płynu lepkiego siły działające na element powierzchni *S* mają dwie składowe

siła działająca na *S* na jednostkę powierzchni =
$$-p(r,t)n$$

_{siła normalna} + $\sigma(r,t) \cdot n$,
_{tu mogą być}
_{siły ścinające}

gdzie σ jest tensorem naprężenia, który opisuje siły ścinające w płynie. Jest on zwany także *tensorem naprężeń Cauchy'ego*. W ustalonym układzie współrzędnych tensor naprężeń może być reprezentowany macierzą 3 x 3. Tak więc wyrażenie $\sigma \cdot \mathbf{n}$ należy rozumieć jako mnożenie macierzy σ przez wektor normalny \mathbf{n} (\mathbf{n} jest wtedy zapisany jako wektor kolumnowy).

Z tego sformułowania widzimy, że siła ścinająca jest liniowa względem *n*. Ten fakt nie jest oczywisty!⁵

Podobnie jak w przypadku płynu idealnego, możemy wykorzystać dla płynu lepkiego drugie prawo Newtona dla *poruszającej* się cząstki płynu W_t

$$\frac{d}{dt} \int_{W_t} \rho \upsilon dV = \int_{\frac{\partial W_t}{\text{sily wewnerzne}}} (-pn + \sigma \cdot n) dA + \int_{\frac{W_t}{\text{massive sily}}} \rho \mathbf{f} dV$$
(1.65)

Siły wewnętrzne działające przez wybraną myślowo powierzchnię składają się zatem z dwóch członów: normalnego (reprezentowanego przez funkcję skalarną p – ciśnienie) i ścinającego/stycznego (reprezentowanego przez tensor naprężeń σ). Można udowodnić, że tensor naprężenia *jest symetryczny*. To bardzo ważna własność.

Aby uzyskać bardziej szczegółowe równanie ruchu płynu, musimy dokładniej sprecyzować tensor naprężeń. Następujące założenia na temat **o** są fizycznie uzasadnione:

- 1. σ zależy liniowo od gradientu pola prędkości ∇v .
- 2. σ jest niezmienniczy względem obrotów przestrzennych.
- 3. σ jest symetryczny (jak już wspomniano wcześniej jest to wynikiem bardzo ogólnych założeń o regularności tego tensora oraz zasady zachowania pędu).

Gradient prędkości (wielkość wektorowa) jest uogólnieniem gradientu dla wielkości skalarnej (wzór (1.28)). Jest to macierz, w której wierszami są gradienty kolejnych składowych wektora $\mathbf{v}=[v_x,v_y,v_z]$:

$$\nabla \boldsymbol{\upsilon} = \begin{bmatrix} \frac{\partial \upsilon_x}{\partial x} & \frac{\partial \upsilon_x}{\partial y} & \frac{\partial \upsilon_x}{\partial z} \\ \frac{\partial \upsilon_y}{\partial x} & \frac{\partial \upsilon_y}{\partial y} & \frac{\partial \upsilon_y}{\partial z} \\ \frac{\partial \upsilon_z}{\partial x} & \frac{\partial \upsilon_z}{\partial y} & \frac{\partial \upsilon_z}{\partial z} \end{bmatrix}.$$
(1.66)

W oparciu o założenia 1., 2., i 3. można pokazać, że tensor naprężeń ma postać:

$$\boldsymbol{\sigma} = \lambda (\operatorname{div} \boldsymbol{\upsilon}) \mathbf{I} + 2\mu \mathbf{D}. \tag{1.67}$$

gdzie λ oraz μ są nieujemnymi parametrami charakteryzującymi lepki płyn, a tensor **D** ma postać:

⁵ Udowodnił to August Cauchy (pocz. XIX w.) na podstawie zasady zachowania pędu.

$$\mathbf{D} = \frac{1}{2} \left(\nabla \boldsymbol{\upsilon} + (\nabla \boldsymbol{\upsilon})^{\mathsf{T}} \right) = \begin{bmatrix} \frac{\partial \upsilon_x}{\partial x} & \frac{1}{2} \left(\frac{\partial \upsilon_x}{\partial y} + \frac{\partial \upsilon_y}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial \upsilon_x}{\partial z} + \frac{\partial \upsilon_z}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial \upsilon_x}{\partial y} + \frac{\partial \upsilon_y}{\partial x} \right) & \frac{\partial \upsilon_y}{\partial y} & \frac{1}{2} \left(\frac{\partial \upsilon_y}{\partial z} + \frac{\partial \upsilon_z}{\partial y} \right) \\ \frac{1}{2} \left(\frac{\partial \upsilon_x}{\partial z} + \frac{\partial \upsilon_z}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial \upsilon_y}{\partial z} + \frac{\partial \upsilon_z}{\partial y} \right) & \frac{\partial \upsilon_z}{\partial z} \end{bmatrix}.$$
(1.68)

Wykorzystując jeszcze pewne przekształcenia oraz postać tensora naprężeń $\sigma = \lambda (\text{div } \mathbf{v})\mathbf{I} + 2\mu \mathbf{D}$ możemy równanie (1.65) zapisać w postaci:

$$\int_{W} \rho \left(\frac{\partial \boldsymbol{\nu}}{\partial t} + (\boldsymbol{\nu} \cdot \nabla) \boldsymbol{\nu} \right) d\boldsymbol{V} = \int_{W} \left(-\nabla \rho + (\lambda + \mu) \nabla (\operatorname{div} \boldsymbol{\nu}) + \mu \Delta \boldsymbol{\nu} + \rho \mathbf{f} \right) d\boldsymbol{V},$$
(1.69)

co wobec dowolności zbioru W oznacza, że wyrażenia pod całkami muszą być równe:

$$\rho\left(\frac{\partial \boldsymbol{\upsilon}}{\partial t} + (\boldsymbol{\upsilon} \cdot \nabla)\boldsymbol{\upsilon}\right) = -\nabla \rho + (\lambda + \mu)\nabla(\operatorname{div}\boldsymbol{\upsilon}) + \mu\Delta\boldsymbol{\upsilon} + \rho \mathbf{f}.$$
(1.70)

W ten sposób otrzymujemy *układ równań Naviera–Stokesa* opisujący ruch płynu lepkiego. Tutaj jest zapisany w formie wektorowej, ale $\upsilon = [\upsilon_x, \upsilon_y, \upsilon_z]$, więc (1.70) jest układem trzech równań skalarnych na składowe prędkości. Mamy na przykład dla składowej υ_x :

$$\rho \left(\frac{\partial v_{x}}{\partial t} + v_{x} \frac{\partial v_{x}}{\partial x} + v_{y} \frac{\partial v_{x}}{\partial y} + v_{z} \frac{\partial v_{x}}{\partial z} \right)
= -\nabla \rho + (\lambda + \mu) \frac{\partial}{\partial x} \left(\frac{\partial v_{x}}{\partial x} + \frac{\partial v_{y}}{\partial y} + \frac{\partial v_{z}}{\partial z} \right) + \mu \left(\frac{\partial^{2} v_{x}}{\partial x^{2}} + \frac{\partial^{2} v_{x}}{\partial y^{2}} + \frac{\partial^{2} v_{x}}{\partial z^{2}} \right) + \rho f_{x}.$$
(1.71)

Analogiczne równania są dla składowych υ_y oraz υ_z .

Układ równań Naviera–Stokesa (1.70) nie wystarcza jeszcze do uzyskania opisu ruchu płynu, gdyż jak widzimy zawiera on pięć niewiadomych wielkości:

$$\upsilon_x, \upsilon_y, \upsilon_z, \rho, \rho, \tag{1.72}$$

tj. składowe prędkości, ciśnienie oraz gęstość. Sam układ (1.70) opisuje płyn lepki, który może być ściśliwy (na przykład gaz) lub nie. W przypadku jednak wielu cieczy (woda, etanol itp.) można przyjąć, że są one w typowych sytuacjach praktycznie nieściśliwe, czyli o stałej gęstości, ρ =const, co daje kolejne równanie. W tym przypadku ρ jest daną stała materiałową (np. gęstość wody). Ponadto, dla płynu nieściśliwego mamy warunek (1.17), zatem w przypadku nieściśliwej cieczy układ opisujący jej przepływ składa się z poniższych równań:

$$\begin{cases} \rho \left(\frac{\partial \boldsymbol{\nu}}{\partial t} + (\boldsymbol{\nu} \cdot \nabla) \boldsymbol{\nu} \right) = -\nabla \rho + \mu \Delta \boldsymbol{\nu} + \rho \mathbf{f}, \\ \operatorname{div} \boldsymbol{\nu} = \mathbf{0}, \end{cases}$$
(1.73)

gdzie ρ jest daną gęstością cieczy.

W literaturze – zwłaszcza matematycznej – to właśnie powyższy układ równań dla cieczy lepkiej i nieściśliwej zwany jest układem *równań Naviera–Stokesa*. Jest on już kompletny: mamy cztery niewiadome: $v = [v_x, v_y, v_z]$, p oraz cztery równania (pierwsze równanie w (1.73) to są trzy równania skalarne). Danymi są współczynniki charakteryzujące ciecz: ρ , μ (gęstość i lepkość dynamiczna) oraz ewentualnie gęstość pola sił zewnętrznych **f**.

1.4. Warunki początkowe i brzegowe

W problemach niestacjonarnych (zależnych od czasu) należy znać stan układu w chwili początkowej (*warunki początkowe*). Musimy również określić, co dzieje się na brzegu obszaru, który oddziela układ od otoczenia (*warunki brzegowe*).

Warunki brzegowe podzielimy na dwa rodzaje:

- i) warunki brzegowe typu Neumanna,
- ii) warunki brzegowe Dirichleta.

Warunki brzegowe typu Neumanna dotyczą strumienia na brzegu, a dokładniej jego składowej prostopadłej do brzegu, $J_n = \mathbf{J} \cdot \mathbf{n}$. Jeżeli przez brzeg (lub jego fragment) nie może przenikać wielkość fizyczna opisywana strumieniem **J**, oznacza to, że składowa ta jest równa zero:

$$V_n = \mathbf{J} \cdot \boldsymbol{n} = \mathbf{0}. \tag{1.74}$$

Jeżeli przez brzeg przepływa dana wielkość fizyczna (np. energia, masa, konkretny rodzaj cząsteczek itp.) z zadaną szybkością *q*, to mówimy o niejednorodnym warunku brzegowym Neumanna:

$$U_n = \mathbf{J} \cdot \boldsymbol{n} = \boldsymbol{q}. \tag{1.75}$$

Ogólniejsze warunki od powyższych polegają na tym, że strumień przez brzeg zależy też od aktualnego stanu układu. Na przykład przepływ ciepła przez brzeg może zależeć od temperatury układu na brzegu i na zewnątrz

$$J_{q,n} = \mathbf{J}_q \cdot \mathbf{n} = h \cdot (T - T_{zew}), \tag{1.76}$$

gdzie *h* to współczynnik przenikania ciepła, W/(m²·K), T_{zew} to temperatura na zewnątrz układu. Warunek taki jak (1.76) istotnie różni się warunku (1.75), gdyż tym razem strumień na brzegu zależy też od niewiadomej wielkości, czyli temperatury $T(\mathbf{x}, t)$. W przypadku warunku (1.75) strumień *q* może zależeć od czasu i od położenia $\mathbf{x} \in \partial \Omega$ na brzegu, czyli $q = q(\mathbf{x}, t)$, ale jest wielkością zadaną. Natomiast w przypadku warunku (1.76) prawa strona nie jest znana, bo rozkład temperatury $T = T(\mathbf{x}, t)$ jest niewiadomą.

Dla układu wieloskładnikowego mogą być różne warunki brzegowe dla różnych składników. Na przykład brzeg może być nieprzepuszczalny (zamknięty, izolujący) dla składnika i = 1, ale przepuszczalny dla składnika i = 2:

$$J_{1} \cdot n = 0,$$

$$J_{2} \cdot n = k_{1}(c_{1} - c_{1,zew}).$$
(1.77)

Warunki brzegowe typu Dirichleta oznaczają zadanie wartości funkcji niewiadomej na brzegu lub jego fragmentach. Na przykład w transporcie ciepła wielkością niewiadomą jest rozkład temperatury, $T(\mathbf{x}, t)$. Warunek brzegowy Dirichleta dla temperatury będzie miał postać

$$T = T_{zew}, \qquad (1.78)$$

gdzie równość ma zachodzić na brzegu $\partial \Omega$, a T_{zew} jest dane. Aby podkreślić, że warunek (1.78) zachodzi na brzegu, czasami piszemy jawnie argumenty funkcji:

$$T(x,t) = T_{zew} \quad \text{dla} \quad x \in \partial \Omega. \tag{1.79}$$

Każde ciało o dodatniej temperaturze (w skali bezwzględnej) emituje energię w postaci promieniowania elektromagnetycznego (fali elektromagnetycznej). Zazwyczaj dla temperatur pokojowych i niższych oraz gdy czas obserwacji układu jest krótki zaniedbujemy ten efekt w bilansie energii. Ale dla wyższych temperatur (na przykład rozgrzane do czerwoności żelazo lub grzejnik w pomieszczeniu) należy uwzględnić tę energię w bilansie. Ponieważ promieniowanie odbywa się przez brzeg, więc zjawisko to ujmujemy w formie odpowiedniego warunku brzegowego. Przydatne jest tu *prawo Stefana–Boltzmanna* na całkowitą moc promieniowania w zależności od temperatury ciała

$$J_{a,n} = \mathbf{J}_{a} \cdot \mathbf{n} = \sigma_{B} \varepsilon_{B} T^{4} \text{ na } \partial \Omega.$$
(1.80)

gdzie $\sigma_{B} = 5.67 \cdot 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$ jest tzw. stałą Stefana–Boltzmanna, a $0 < \varepsilon_{R} \le 1$ to współczynnik emisyjności powierzchniowej (współczynnik względnej zdolności emisyjnej). Dla ciała o doskonałej emisyjności $\varepsilon_{R} = 1$.

Warunki brzegowe dla równań Naviera-Stokesa

Przypomnijmy, że brzeg obszaru Ω , w którym znajduje się płyn oznaczamy symbolem $\partial \Omega$. Wtedy jeden z możliwych warunków jest taki, który stwierdza po prostu, że płyn nie przenika przez brzeg (ścianka szczelna), czyli składowa w kierunku normalnym (prostopadłym) musi być równa zero:

$$\boldsymbol{v} \cdot \boldsymbol{n} = \mathbf{0} \text{ na } \partial \Omega.$$
 (1.81)

Taki warunek jest oczywisty dla brzegu, który jest nieprzenikliwy dla płynu.

Z drugiej strony warunek (1.81) nie wyklucza możliwości istnienia niezerowej składowej stycznej do brzegu. Taka sytuacja oznaczała by, że płyn mógłby się niejako ślizgać wzdłuż brzegu. Okazuje się, że fizycznie taki warunek w typowych przepływach płynów lepkich nie może zachodzić – prędkość styczna też spada do zera co wynika z doświadczeń. Okazuje się, że jest to również wymagane przez matematyczną teorię równań Naviera–Stokesa (1.73). Tak więc stosuje się warunek, że składowa styczna też jest zerowa (tzw. "*no-slip condition*"). To w połączeniu z warunkiem (1.81) sprowadza się do wymogu, aby całkowita prędkość na brzegu była równa zero:

$$\boldsymbol{v}$$
=0 na $\partial \Omega$ (1.82)

Pokreślmy: warunek powyższy jest wymagany dla płynu lepkiego ($\mu > 0$). Natomiast dla płynu o lepkości zerowej, opisywanego równaniem Eulera (1.49) może wystąpić poślizg płynu wzdłuż brzegu (ściany), czyli składowa styczna może być niezerowa. Natomiast składowa normalna musi być zero (płyn nie przenika prze brzeg). Zatem dla równań Eulera przyjmujemy warunek (1.81).

Bibliografia

- 1. M. Rappaz, M. Bellet, M.O. Deville, Numerical Modeling in Materials Science and Engineering, Springer, 1998.
- 2. R. Podhorecki, S. Wroński, Kinetyka i termodynamika procesów inżynierii chemicznej, WNT, Warszawa, 1979,
- 3. M.E. Glicksman, Diffusion in solids; Field theory, solid state principles and applications, John Wiley & Sons, 2000.

2. Numeryczne metody rozwiązywania zagadnień transportu

Najczęściej stosowane metody numerycznego rozwiązywania zagadnień transportu masy i energii to *metoda różnic skończonych* i *metoda elementów skończonych*. Metoda różnic skończonych opiera się na zastąpieniu pochodnych w równaniach różniczkowych odpowiednio dobranymi ilorazami różnicowymi, co prowadzi do ("algebraicznego") układu równań lub do układu równań różniczkowych zwyczajnych (w przypadku zagadnień zależnych od czasu). Natomiast metoda elementów skończonych jest matematycznie bardziej złożona, gdyż wymaga najpierw przeformułowania wyjściowego równania (lub układu równań) do tzw. *postaci słabej* (zwanej też *postacią uogólnioną*) przy użyciu całek, wybraniu odpowiedniego zbioru funkcji bazowych, przybliżeniu szukanego rozwiązania w formie skończonej sumy względem funkcji bazowych i wstawieniu tej sumy do słabej postaci zagadnienia. Podobnie, jak dla metody różnic, prowadzi to do układu równań "algebraicznych" lub i układu równań różniczkowych zwyczajnych, na ogół jednak innych niż w metodzie różnic skończonych. W przypadku jednego wymiaru, lub prostych obszarów w dwu- lub trzech wymiarach (prostokąt, prostopadłościan) metoda różnic skończonych jest szczególnie prosta i łatwa do realizacji komputerowej.

2.1. Sformułowanie problemu transportu masy/ciepła

Prześledzimy konstrukcję przybliżenia rozwiązania metodą różnic skończonych dla dyfuzji w jednym wymiarze (1D). Strumień dyfuzyjny ($J = -D\partial c / \partial x$)) i brak reakcji (R = 0) prowadzą do równania

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}, \quad \text{dla } 0 \le x \le L, \ t \ge 0.$$
(2.1)

Przyjmiemy warunki brzegowe typu Dirichleta (znane stężenia na brzegu)

$$c(0,t) = c_{L}, \ c(L,t) = c_{P},$$
 (2.2)

oraz stałe stężenie jako warunek początkowy

$$c(x,0) = c_{pocz} \quad \text{dla} \quad 0 \le x \le L. \tag{2.3}$$

2.2. Metoda różnic skończonych

Szukane rozwiązanie c(x, t) jest określone dla $x \in [0, L]$. Wprowadzamy jednorodną siatkę punktów ("węzły") { $x_0, x_1, ..., x_n$ } $\subset [0, L]$ odległych o Δx (Rys. 2-1):

$$x_0 = 0, \quad x_{i+1} = x_i + \Delta x \quad (i = 0, 1, 2, \dots, n-1).$$

Mówimy, że krok przestrzenny wynosi $\Delta x = L/n$. Zauważmy, że pierwszy i ostatni węzeł pokrywają się z punktami na brzegu odcinka: $x_0 = 0$ oraz $x_n = L$. Dalej użyjemy następujących oznaczeń

$$c_i^t := c(x_i, t)$$
 dla $i = 0, 1, ..., n$.

Rys. 2-1. Dyskretyzacja przestrzenna dla zagadnienia 1D. Odcinek [0, *L*] jest podzielony na mniejsze przy pomocy punktów *x_i*. W metodzie numerycznej wartości rozwiązania będą wyznaczone w tych punktach.

Zastępujemy pochodne w równaniu (2.1) odpowiednimi ilorazami różnicowymi. Dla drugiej pochodnej względem x użyjemy tzw. centralnego ilorazu różnicowego

$$\frac{\partial^2 c}{\partial x^2}(x,t) \approx \frac{c(x+\Delta x,t)-2c(x,t)+c(x-\Delta x,t)}{\Delta x^2},$$
(2.4)

a dla pierwszej pochodnej względem czasu zwykłego ilorazu różnicowego w przód

$$\frac{\partial c}{\partial t}(x,t) \approx \frac{c(x,t+\Delta t) - c(x,t)}{\Delta t}.$$
(2.5)

Teraz równanie (2.1) możemy przybliżyć w węzłach wewnętrznych (x_i , $1 \le i \le n-1$) równością

$$\frac{c(x_i,t+\Delta t)-c(x_i,t)}{\Delta t}\approx\frac{c(x_i+\Delta x,t)-2c(x_i,t)+c(x_i-\Delta x,t)}{\Delta x^2}.$$
(2.6)

Jeżeli skorzystamy z następujących równości

$$c(x_{i} + \Delta x, t) = c(x_{i+1}, t) = c_{i+1}^{t},$$

$$c(x_{i} - \Delta x, t) = c(x_{i-1}, t) = c_{i-1}^{t},$$

$$c(x_{i}, t + \Delta t) = c_{i}^{t+\Delta t},$$
(2.7)

to równość (2.6) przyjmie postać

$$\frac{c_i^{t+\Delta t} - c_i^t}{\Delta t} = D \frac{c_{i+1}^t - 2c_i^t + c_{i-1}^t}{\Delta x^2}, \quad i = 1, \dots, n-1.$$
(2.8)

Przekształcamy powyższą równość:

$$c_{i}^{t+\Delta t} - c_{i}^{t} = \frac{\Delta t}{\Delta x^{2}} (c_{i+1}^{t} - 2c_{i}^{t} + c_{i-1}^{t}),$$

$$c_{i}^{t+\Delta t} = c_{i}^{t} + D \frac{\Delta t}{\Delta x^{2}} (c_{i+1}^{t} - 2c_{i}^{t} + c_{i-1}^{t}) = \frac{D\Delta t}{\Delta x^{2}} c_{i+1}^{t} + \left(1 - 2 \frac{D\Delta t}{\Delta x^{2}}\right) c_{i}^{t} + \frac{D\Delta t}{\Delta x^{2}} c_{i-1}^{t},$$
(2.9)

i otrzymujemy

$$c_{i}^{t+\Delta t} = sc_{i+1}^{t} + (1-2s)c_{i}^{t} + sc_{i-1}^{t}, \quad i = 1, 2, \dots n-1,$$
(2.10)

gdzie $s = D\Delta t/\Delta x^2$. Mamy zatem schemat obliczeniowy (2.10), który pozwala wyliczyć stężenie w węzłach x_i w chwili $t + \Delta t$, gdy znane jest w chwili t. Dla t = 0 używamy warunku początkowego (2.3), a dla węzłów brzegowych $\{x_0, x_n\}$ warunku (2.2). Podsumowując, metoda różnic skończonych dla problemu (2.1) z warunkami początkowo-brzegowymi (2.3), (2.2) sprowadza się do wzorów:

$$c_{i}^{0} = c_{pocz}(x_{i}) \text{ dla } i = 0,...,n,$$

$$c_{0}^{t+\Delta t} = c_{L}, c_{n}^{t+\Delta t} = c_{p},$$

$$c_{0}^{t+\Delta t} = sc_{i+1}^{t} + (1-2s)c_{i}^{t} + sc_{i-1}^{t}, i = 1,2,...n-1,$$
(2.11)

gdzie wartość parametru numerycznego

$$s = D \frac{\Delta t}{\left(\Delta x\right)^2} \tag{2.12}$$

wynika z przyjętej dokładności przybliżeń czyli z kroków czasowego Δt i przestrzennego Δ^2 .

Uwaga: W przypadku dyskretyzacji pochodnej czasowej zastosowaliśmy tutaj bardzo prosty sposób – różnicę w przód (2.5) – co prowadzi do tzw. *jawnej metody Eulera* (2.10). Jest ona łatwa do realizacji komputerowej, ale ma ograniczenie polegające na braku stabilności, gdy krok czasowy nie jest właściwie skorelowany z krokiem przestrzennym. Musi być bowiem spełniony warunek *s* < 1/2, czyli

$$\Delta t < \frac{1}{2D} (\Delta x)^2. \tag{2.13}$$

Ogólnie warunek ten oznacza, że jeżeli chcemy zwiększyć dokładność dyskretyzacji przestrzennej o rząd wielkości, czyli zmniejszamy Δx 10 razy, to krok czasowy Δt musimy zmniejszyć 100 razy. Powoduje to zwiększenie czasu obliczeń ok. 1000 krotnie.

2.3. Metoda elementów skończonych (MES)

Pierwszym etapem jest przeformułowanie problemu zapisanego w postaci różniczkowej (2.1) do tzw. *postaci słabej*⁶ przy użyciu całkowania. W przypadku zagadnień jednowymiarowych wystarczy posłużyć się wzorem na całkowanie przez części:

$$\int_{a}^{b} f(x)g'(x)dx = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx.$$
(2.14)

Warunki brzegowe (2.2) dla naszego problem są niezerowe. Okazuje się, że w takiej postaci nie można jeszcze dokonać przejścia do postaci słabej, dlatego należy przekształcić wyjściowe zagadnienie do równoważnego z warunkami Dirichleta zerowymi. Jest to łatwe – wystarczy podstawienie

$$\tilde{c}(x,t) = c(x,t) - \frac{c_{p} - c_{L}}{L} x - c_{L}.$$
(2.15)

Ponieważ

$$\tilde{c}(0,t) = c(0,t) - \frac{c_{P} - c_{L}}{L} 0 - c_{L} = c_{L} - c_{L} = 0, \quad \tilde{c}(L,t) = c(L,t) - \frac{c_{P} - c_{L}}{L} L - c_{L} = c_{P} - (c_{P} - c_{L}) - c_{L} = 0,$$

więc funkcja ta spełnia warunki zerowe na brzegu

$$\tilde{c}(0,t) = 0, \quad \tilde{c}(L,t) = 0.$$
 (2.16)

Zauważamy, że $\partial \tilde{c} / \partial t = \partial c / \partial t$ i $\partial^2 \tilde{c} / \partial x^2 = \partial^2 c / \partial x^2$, zatem *c* i \tilde{c} spełniają takie samo równanie:

⁶ W matematyce używa się jeszcze określeń – *postać uogólniona* lub *postać wariacyjna*.

$$\frac{\partial \tilde{c}}{\partial t} = D \frac{\partial^2 \tilde{c}}{\partial x^2} \quad \text{dla } 0 \le x \le L, \ t \ge 0.$$
(2.17)

Warunek początkowy dla \tilde{c} będzie miał postać:

$$\tilde{c}(x,0) = c_{pocz}(x) - \frac{c_{p} - c_{L}}{L} x - c_{L}.$$
(2.18)

Zatem, aby rozwiązać problem dyfuzji z warunkami Dirichleta (2.2) można rozwiązać analogiczny problem, ale z warunkami zerowymi (2.16) oraz rozkładem początkowym (2.18), a następnie uzyskane rozwiązanie \tilde{c} wstawić do (2.15), aby otrzymać *c*. Tak więc, do opisania metody numerycznej wystarczą zerowe warunki Dirichleta, dlatego jako modelowy problem przyjmiemy:

$$\begin{cases} \frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}, \\ c(0,t) = 0, \ c(L,t) = 0, \ c(x,0) = c_{pocc}(x). \end{cases}$$
(2.19)

Wprowadzamy przestrzeń funkcji różniczkowalnych w sposób ciągły zerujących się na brzegu:

$$H(0,L) = \{\varphi : [0, L] \to \mathbb{R} \text{ taka, } \dot{z}e \ \varphi' \text{ jest ciągała i } \varphi(0) = \varphi(L) = 0\}.$$

$$(2.20)$$

Przeformułowanie do postaci słabej (uogólnionej) zagadnienia (2.19) polega teraz na pomnożeniu równania przez dowolną funkcję $\phi \in H(0, L)$, scałkowaniu obu stron po $x \in [0, L]$ oraz wykonaniu całkowania przez części (2.14):

$$\frac{\partial c}{\partial t}(x,t) = D \frac{\partial^2 c}{\partial x^2}(x,t) \Rightarrow \frac{\partial c}{\partial t}(x,t)\varphi(x) = D \frac{\partial^2 c}{\partial x^2}(x,t)\varphi(x)$$

$$\Rightarrow \int_0^L \frac{\partial c}{\partial t}(x,t)\varphi(x)dx = \int_0^L D \frac{\partial^2 c}{\partial x^2}(x,t)\varphi(x)dx$$

$$\Rightarrow \frac{d}{dt} \int_0^L c(x,t)\varphi(x)dx = D \left[\frac{\partial c}{\partial x}(x,t)\varphi(x) \right]_{x=0}^{x=L} - D \int_0^L \frac{\partial c}{\partial x}(x,t) \frac{\partial \varphi}{\partial x}(x)dx.$$
(2.21)

Zauważmy, że

$$\left[\frac{\partial c}{\partial x}(x,t)\varphi(x)\right]_{x=0}^{x=L} = \frac{\partial c}{\partial x}(L,t)\varphi(L) - \frac{\partial c}{\partial x}(0,t)\varphi(0) = 0,$$
(2.22)

gdyż $\varphi(0) = \varphi(L)=0$. Ostatecznie sformułowanie słabe problemu (2.19) oznacza poszukiwanie funkcji c(x,t) spełniającej tożsamość całkową

$$\frac{d}{dt}\int_{0}^{L}c(x,t)\varphi(x)dx = -D\int_{0}^{L}\frac{\partial c}{\partial x}(x,t)\frac{\partial \varphi}{\partial x}(x)dx$$
(2.23)

dla dowolnej funkcji $\phi \in H(0, L)$ oraz warunek początkowy

$$c(x,0) = c_{nocr}(x), \ x \in [0, L].$$
 (2.24)

<u>Uwaga</u>: Można wykazać, że sformułowania (2.19) oraz (2.23) są równoważne (przy tym samym warunku początkowym $c(x,0) = c_{pocz}(x)$), jeżeli szukamy rozwiązania w klasie funkcji mających drugą pochodną $\partial^2 c / \partial x^2$ ciągłą. Natomiast sformułowanie słabe (2.23) jest ogólniejsze w tym sensie, że nie

musi istnieć nawet druga pochodna – wystarczy, aby istniała ciągła pierwsza pochodna $\partial c/\partial x$, co z kolei oznacza istnienie ciągłego strumienia $J = -D\partial c/\partial x$.

Gdy już mamy przeformułowany problem do postaci słabej (2.23), możemy przystąpić do tworzenia schematu obliczeniowego metodą elementów skończonych. W tym celu należy wybrać pewną skończeniewymiarową podprzestrzeń przestrzeni H(0, *L*). W praktyce oznacza to wybranie skończonego zbioru tzw. funkcji bazowych: $\varphi_0, \ldots, \varphi_n \in H(0, L)$. Baza te będzie użyta do zbudowania przybliżonego rozwiązania problemu jako sumy

$$c(x,t) \approx c_h(x,t) = \sum_{i=0}^n \lambda_i(t)\varphi_i(x), \qquad (2.25)$$

gdzie nieznane współczynniki $\lambda_i(t)$ będą wyznaczone w oparciu o równanie (2.23). W przypadku zagadnień niestacjonarnych współczynniki λ_i są funkcjami czasu, a w przypadku stacjonarnych są to liczby. Teraz pojawia się kluczowy aspekt MES: sposób konstrukcji bazy $\varphi_0, \ldots, \varphi_n$. W MES bazę konstruuje się dzieląc dziedzinę [0, L] na sumę mniejszych obszarów. Podział ten – zwany w ogólności triangulacją – musi spełniać pewne warunki. W przypadku jednowymiarowym triangulacja jest trywialna – podział na odcinki. Ale w przypadku dwóch- lub trzech wymiarów jest to niebanalne zagadnienie z geometrii obliczeniowej (znane są specjalne algorytmy, na przykład *triangulacja Delanueya*). Dla dziedzin na płaszczyźnie często podział jest na trójkąty, a dla dziedzin w przestrzeni – są to zazwyczaj czworościany⁷. Na rysunku (Rys. 2-2) przedstawiono przykładowe triangulacje w trzech przypadkach (wymiar 1, 2 i 3). Jak widać w jednym wymiarze jest to zagadnienie trywialne, ale w wyższych już nie.

⁷ Niezależnie od wymiaru mówimy zawsze o triangulacji, choć tylko w przypadku płaszczyzny \mathbb{R}^2 występują w podziale trójkąty (ang. triangles).

Rys. 2-2 Przykładowe triangulacje w geometrii: a) jednowymiarowej 1D, b) dwuwymiarowej 2D i c) trójwymiarowej 3D.

Funkcje bazowe definiuje się w oparciu o dokonaną triangulację dziedziny. Najprostszy rodzaj funkcji bazowych to wielomiany pierwszego stopnia (funkcje liniowe) na każdym elemencie podziału. Zatem w jednym wymiarze są to funkcje postaci ax + b, w dwóch wymiarach ax + by + c itd. Oczywiście współczynniki a, b, c itd. mogą być różne dla poszczególnych elementów podziału. W przypadku funkcji bazowych drugiego stopnia są to wielomiany kwadratowe: w jednym wymiarze $ax^2 + bx + c$, w dwóch wymiarach $ax^2+by^2+cxy+d$ itd. Przykładowe funkcje bazowe pierwszego stopnia 1D pokazuje Rys. 2-3.

Rys. 2-3 Przykładowe funkcje bazowe pierwszego stopnia w geometrii 1D.

Konstrukcje funkcji bazowych (ustalonego stopnia) odbywa się automatycznie, gdy już mamy dokonaną triangulację, choć w jednym wymiarze można łatwo podać jawne wzory, na przykład

$$\varphi_{i}(x) = \begin{cases} \frac{x - x_{i-1}}{x_{i} - x_{i-1}} & \text{dla } x_{i-1} \leq x \leq x_{i}, \\ \frac{x - x_{i-1}}{x_{i} - x_{i-1}} & \text{dla } x_{i-1} \leq x \leq x_{i}, \end{cases}$$

$$\varphi_{i}(x) = 0 \quad w \text{ pozostałych przypadkach.}$$

$$(2.26)$$

Gdy funkcje bazowe są zdefiniowane, to jak już wspomniano, szukamy przybliżenia w postaci (2.25). Zatem wstawiamy tę postać do równania uogólnionego (2.23), a w miejsce φ wstawiamy φ_i :

$$\frac{d}{dt} \int_{0}^{L} \sum_{i=0}^{n} \lambda_{i}(t) \varphi_{i}(x) \varphi_{j}(x) dx = -D \int_{0}^{L} \frac{\partial}{\partial x} \sum_{i=0}^{n} \lambda_{i}(t) \varphi_{i}(x) \frac{d\varphi_{j}}{dx}(x) dx,$$

$$\frac{d}{dt} \sum_{i=1}^{n} \lambda_{i}(t) \int_{0}^{L} \varphi_{i}(x) \varphi_{j}(x) dx = -D \sum_{i=0}^{n} \lambda_{i}(t) \int_{0}^{L} \frac{d\varphi_{i}}{dx}(x) \frac{d\varphi_{j}}{dx}(x) dx,$$

$$\sum_{i=1}^{n} \lambda_{i}'(t) \int_{0}^{L} \varphi_{i}(x) \varphi_{j}(x) dx = -D \sum_{i=0}^{n} \lambda_{i}(t) \int_{0}^{L} \frac{d\varphi_{i}}{dx}(x) \frac{d\varphi_{j}}{dx}(x) dx.$$
(2.27)

Zauważmy, że całki $\int_{0}^{L} \varphi_{i} \varphi_{j} dx$ oraz $\int_{0}^{L} \frac{d\varphi_{i}}{dx} \frac{d\varphi_{i}}{dx} dx$ są to już konkretne liczby, gdyż φ_{i} są dane. Możemy więc powyższy układ przepisać tak

$$\sum_{i=0}^{n} a_{ij} \lambda_{i}'(t) = -D \sum_{i=0}^{n} b_{ij} \lambda_{i}(t) \quad \text{dla} \quad j = 0, \dots, n,$$
(2.28)

gdzie

$$a_{ij} = \int_{0}^{L} \varphi_i(x)\varphi_j(x)dx, \quad b_{ij} = \int_{0}^{L} \frac{d\varphi_i}{dx}(x)\frac{d\varphi_j}{dx}(x)dx.$$
(2.29)

Otrzymaliśmy ostatecznie układ równań różniczkowych zwyczajnych (2.28) z warunkiem początkowym wynikającym z (2.24)

$$\sum_{i=0}^{n} a_{ij} \lambda_i(0) = b_j^0 \quad \text{dla} \quad j = 0, \dots, n,$$
(2.30)

gdzie

$$b_{j}^{0} = \int_{0}^{L} c_{pocz}(x) \varphi_{j}(x) dx.$$
(2.31)

Opisana procedura MES dla równania dyfuzji (2.1) wydaje się dość skomplikowana – zwłaszcza w porównaniu z metodą różnic skończonych. Należy jednak pamiętać, że środowiska obliczeniowe takie jak COMSOL realizują cały ten schemat automatycznie. Użytkownik może skorzystać z ustawień domyślnych metody MES lub modyfikować niektórej jej parametry.

Bibliografia

- 1. A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, wyd. 2, Springer Berlin, Heidelberg, 2006.
- 2. D.W. Pepper, J.C. Heinrich, The Finite Element Method Basic Concepts and Applications with MATLAB, MAPLE, and COMSOL, wyd. 3, CRC Press, 2017.
- 3. Mulltiphysics Cyclopedia: https://www.comsol.com/multiphysics

3. Środowisko obliczeniowe COMSOL Multiphysics

Oprogramowanie COMSOL Multiphysics[®] jest narzędziem do symulacji procesów w niemal wszystkich dziedzinach inżynierii, produkcji i badaniach naukowych. COMSOL Multiphysics[®] zawiera m.in. platformę do symulacji procesów transportu masy, energii i pędu. *Model Builder* obejmuje wszystkie etapy procesu modelowania — od definiowania geometrii, właściwości materiałów i równań opisujących określone zjawiska, warunków brzegowych i początkowych po rozwiązywanie i przetwarzanie modeli w celu uzyskania pożądanych wyników.

3.1. Stosowane konwencje oraz oznaczenia

Równania bilansu oraz równania konstytutywne należy wpisać w COMSOLu w formie odpowiednich wyrażeń. Same równania zostały szczegółowo omówione w Rozdziale 1 *Wprowadzenie do modelowania*. Sposób wpisywania wyrażeń jest w większości zgodny z zapisem matematycznym. Istnieje jednak kilka wyjątków, które zostaną opisane poniżej.

UWAGA 1: COMSOL rozróżnia małe i duże litery. Symbole x, y, z, t, eps, h są wbudowane i zastrzeżone.

UWAGA 2: **COMSOL używa jako separatora dziesiętnego kropki** (stosowanego w j. angielskim) zamiast przecinka stosowanego w j. polskim. Dla ujednolicenia, w dalszej części książki będziemy używać kropki jako separatora dziesiętnego, np. 1.5; 2.4E-5.

3.2. Strumień i człony źródłowe

W Rozdziale 1 *Wprowadzenie do modelowania* używaliśmy ogólnie przyjętego w literaturze oznaczenia na strumień J. Jednak w COMSOLu strumień jest oznaczany literą grecką Γ . Również człony źródłowe występujące w równaniach bilansu oznaczane zwykle w literaturze literą *R* w COMSOLu oznaczane są literą *f*.

3.3. Wyrażenia

W COMSOLu zawsze musimy stosować operatory (+,-,*,/) pomiędzy zmiennymi. W wyrażeniach możemy także stosować nawiasy (). W COMSOLu, aby na przykład zapisać pochodną stężenia *c* po położeniu $\partial c/\partial x$, posługujemy się zapisem: cx. Odpowiednio, drugą pochodną po położeniu ze stężenia zapiszemy następująco: cxx. W tabeli (Tab. 3-1) zestawiono na przykładach sposób zapisu matematycznego oraz odpowiadający mu zapis w COMSOLu.

Zapis matematyczny	Zapis w COMSOLu
2 <i>x</i>	2*x
$2\frac{x}{yz}$	2*x/(y*z);
2 <i>x</i> ²	2*x^2

Tab. 3-1 Przykładowe wyrażenia w zapisie matematycznym oraz ich zapis w COMSOLu.
$\frac{\partial f}{\partial t}, \frac{\partial c_1}{\partial x}, \frac{\partial^2 c}{\partial x^2}, \frac{\partial^2 c}{\partial x \partial y}$	ft, c1x, cxx, cxy
$-D_1\frac{\partial c_1}{\partial x}, \frac{\partial^2 c}{\partial x^2} + \frac{\partial^2 c}{\partial y^2}$	-D1*c1x, cxx+cyy

3.4. Parametry i zmienne

Parametry i zmienne służą do parametryzacji i definiowania wartości liczbowych modelu.

W COMSOLu można zdefiniować *parametry*, które będą dostępne w całym modelu. Wprowadzamy je do tabeli *Parametry*. Parametry można wprowadzić ręcznie lub zaimportować je z pliku tekstowego. Parametr można też zdefiniować jako wyrażenie, które odwołuje się np. do innych parametrów lub stałych matematycznych lub fizycznych.

Aby zdefiniować parametry ręcznie:

- 1. W polu *Name* wprowadź nazwę parametru.
- 2. W polu *Expression* wprowadź wartość liczbową lub wyrażenie, które definiuje wartość parametru, w tym jednostkę. Więcej na temat stosowania jednostek w COMSOLu przeczytasz w rozdziale 3.6. Możesz zdefiniować parametr jako wyrażenie, które zawiera liczby, inne zdefiniowane parametry, wbudowane stałe, wbudowane funkcje (Rys. 3-1).
- 3. Pole Value wyświetla wartość parametru w domyślnym systemie jednostek (przeważnie SI).
- 4. W polu *Description* wprowadź opcjonalny opis parametru.

test.mph (root)	🔻 Param	eters	
Global Definitions			
Pi Parameters 1	Name	Expression	Value
(1) Materials	а	20[cm]	0.2 m
- Component 1 (comp1)	b	35[cm]	0.35 m
> = Definitions	A	a*b	0.07 m ²
Materials	r	12[m]	12 m
Mesh 1	Ar	pi*r^2	452.39 m ²
Study 1	tk	10[h]	36000 s
🔄 Step 1: Stationary	frt	F_const/(R_const*T)	42.507 1/V
Results	Т	273[K]	273 K

Parametry w COMSOLu mają wartość stałą, niezależnie od aktualnego stanu obliczeń. Natomiast tzw. *zmienne* (ang. *variables*) nie muszą być stałe. Wprowadzanie zmiennych dokonuje się w węźle *Variables*. Zmienne, podobnie jak parametry, możesz wprowadzić bezpośrednio lub zaimportować z pliku tekstowego. Zmienne mogą być zdefiniowane globalnie lub lokalnie w ramach komponentu (*Component*). Zmienne w zdefiniowane w ramach komponentu mogą zależeć od funkcji, które są szukanymi rozwiązaniami modelu, a także od współrzędnych geometrycznych (*x*, *y*, *z*) lub czasu *t*. Częściej używa się zmiennych lokalnych, dlatego omówimy tylko ten typ. Aby zdefiniować zmienne lokalne klikamy prawym przyciskiem myszy na węźle *Definitions* (pod *Component* 1) w drzewie projektu

i z podręcznego menu wybieramy Variables:

✓ — Component 1	(comp1)	
> \Xi Defin > 🖄 Geom a=	Variables	
👪 Mater	Functions	•
▲ Mesh ✓ ∽ Study 1	Selections	•

Zostanie dodany nowy węzeł (pod Definitions):

Po kliknięciu węzła Variables, po prawej stronie drzewa projektu pojawi się sekcja Variables, a w niej tabelka gdzie wprowadzamy zmienne:

Model Builder ▼ ← → ↑ ↓ ∞ iiit ▼ iii↓ ▼ ii ▼ ▼ Type filter text C	Settings Variables Label: Variables 1
 test.mph (root) Global Definitions Pi Parameters 1 Materials Component 1 (comp1) 	Geometric Entity Selection Geometric entity level: Entire model
✓ ■ Definitions	✓ Variables ✓ Name Expression Unit

Aby zdefiniować zmienne ręcznie:

- 5. W polu *Name* wprowadź nazwę zmiennej.
- 6. W polu *Expression* wprowadź wartość liczbową lub wyrażenie, które definiuje wartość zmiennej. Możesz zdefiniować zmienną jako wyrażenie, które może zawierać liczby, parametry, stałe matematyczne, stałe fizyczne, inne zmienne, funkcje wyrażeń zmiennych, zmienne przestrzenne, czas i operatory, a także mogą mieć jednostki (Rys. 3-2 i Rys. 3-3).
- Pole Unit wyświetla jednostkę zmiennej, która wynika z wprowadzonej definicji (wyrażenia) (przeważnie SI).
- 8. W polu Description wprowadź opcjonalny opis zmiennej.

Variables				
Label: Vari	ables 1			E
 Variable 	es			
Name	Expression	Unit	Description	
а	5[cm]	m	Długość	
b	40[mm]	m	Szerokość	
S	a*b	m²	Pole powierzchni	

Rys. 3-2 Przykładowe definicje zmiennych globalnych w COMSOLu.

Variables				
Label: Va	riables			3
Geom	etric Entity Selection			
Geometric	entity level: Entire mo	odel		•
 Variat 	oles			
Name	Expression	Unit	Description	
vmod	(vx^2+vy^2)^0.5	1/s	dlugość wektora prędkości	
jx	-D*cx	mol/(m ² ·s)	składowa x strumienia masy	

Rys. 3-3 Przykładowe definicje zmiennych lokalnych (w ramach komponentu) w COMSOLu.

3.5. Stałe wbudowane (predefiniowane)

W COMSOLu zostały predefiniowane niektóre stałe fizykochemiczne (Tab. 3-2).

Tab. 3-2 Stałe zdefiniowane w COMSOLu, ich oznaczenie oraz wartość.

Stała	Oznaczenie w COMSOLu	Wartość
Przyśpieszenie ziemskie	g_const	9.80665 m/s ²
Stała Avogadro	N_A_const	6.02214076·10 ²³ 1/mol
Stała Boltzmanna	k_B_const	1.380649·10 ⁻²³ J/K
Charakterystyczna impedancja próżni (impedance of free space)	Z0_const	376.730313461 Ω
Masa elektronu	me_const	9.10938356·10 ⁻³¹ kg

Ładunek elementarny	e_const	1.602176634·10 ⁻¹⁹ C
Stała Faradaya	F_const	96485.33289 C/mol
Stała struktury subtelnej	alpha_const	7.2973525664·10 ⁻³
Stała grawitacji	G_const	6.67408·10 ⁻¹¹ m ³ /(kg·s ²)
Objętość 1 mola gazu doskonałego (273.15 K, 1 atm)	V_m_const	22.413962·10 ⁻³ m ³ /mol
Masa neutronu	mn_const	1.674927471·10 ⁻²⁷ kg
Magnetyczna przenikalność próżni (magnetic constant)	mu0_const	2*alpha_const*h_const/c_cons t/e_const/e_const (H/m)
Przenikalność elektryczna próżni	epsilon0_const	1/mu0_const/c_const/c_const (F/m)
Stała Plancka	h_const	6.62607015·10 ⁻³⁴ J·s
Stała Plancka/2 π	hbar_const	1.05457180·10 ⁻³⁴ J·s
Masa protonu	mp_const	1.672621898·10 ⁻²⁷ kg
Prędkość światła w próżni	c_const	299792458 m/s
Stała Stefana–Boltzmanna	sigma_const	5.670367·10 ⁻⁸ W/(m ² ·K ⁴)
Uniwersalna stała gazowa	R_const	8.3144598 J/(mol·K)
Stała przesunieć Wiena	b const	2.8977729·10 ⁻³ m·K
otala przesalnięc triena		

3.6. Jednostki

Oprogramowanie *COMSOL Multiphysics*[®] obsługuje szereg układów jednostek, w tym układ jednostek SI, który jest domyślnym układem jednostek. Definiując wartość wielkości fizycznej podajemy liczbę i zaraz po niej (bez spacji) jednostkę w nawiasach kwadratowych. Na przykład:

1[s]	1 sekunda
20[mV]	20 miliwoltów
5[mm]	5 milimetrów

Niezależnie od wybranego układu jednostek wyniki obliczeń, np. w postaci wykresów możesz zawsze przedstawić używając wybranej z listy jednostki. Na przykład, kiedy domyślną jednostką jest czas (s) wyniki możesz przedstawić w minutach, godzinach, dniach, latach, ...

Bibliografia

- 1. COMSOL Learning Center: <u>https://www.comsol.com/support/learning-center</u>
- 2. COMSOL Documentation: https://www.comsol.com/documentation
- 3. COMSOL Application Gallery: <u>https://www.comsol.com/models</u>

4. Przykłady do samodzielnej nauki

W tym rozdziale znajdziesz sześć problemów wraz ze szczegółowymi wskazówkami jak rozwiązać je w środowisku COMSOL Multuphysics[®]. Każdy przykład zostanie omówiony w kilku krokach:

- <u>Opis problemu</u> zawiera wprowadzenie do modelu oraz przystępny opis zagadnienia, które zostanie rozwiązane;
- <u>Sformułowanie problemu</u> zawiera matematyczny opis problemu wraz z warunkami początkowymi i brzegowymi;
- <u>Zadanie</u> określa niewiadome, zmienne które chcemy wyliczyć oraz precyzuje w jakiej formie mają być wyświetlone wyniki;
- <u>Rozwiązanie</u> zawiera instrukcję jak krok po kroku rozwiązać problem w środowisku *COMSOL Multuphysics*[®];
- <u>Bibliografia</u> zawiera spis pozycji literaturowych przydatnych do samodzielnego studiowania problemu.

W oparciu o sekcję "Rozwiązanie" możesz indywidualnie przygotować projekt w środowisku *COMSOL Multiphysics*, a następnie rozwiązać problemy sformułowane w sekcji "Zadania". Możesz także sprawdzić poprawność wykonanego przez siebie projektu pobierając gotowy projekt znajdujący się na stronie <u>https://mim.agh.edu.pl/</u>.

4.1. Problem dyfuzji z reakcją

Opis problemu. Układy równań reakcji z dyfuzją mogą modelować wiele różnych zjawisk fizycznych, chemicznych lub biologicznych. Łączą one proces transportu dyfuzyjnego z reakcjami chemicznymi/fizycznymi, które powodują wytwarzanie lub zużywanie reagentów i/lub różnych rodzajów energii. Rozwiązania takich równań pozwalają zatem modelować zmienność w czasie i przestrzeni tych wielkości. Typowym przykładem są reakcje chemiczne w reaktorach chemicznych. W takim procesie będzie zachodziło jednocześnie dyfuzyjne przemieszczanie się materii i zmiana jej stężenia na skutek zachodzących reakcji. Oba te czynniki działają na siebie powodując bogatą i trudną do przewidzenia dynamikę.

Przykład 1.a) Prostym przykładem układu fizycznego, którego opis prowadzi do równania reakcji z dyfuzją jest dyfuzja pojedynczego składnika wraz z ubywaniem go na skutek reakcji o kinetyce pierwszego rzędu, przy czym produkty tej reakcji zaniedbujemy. Dobrą ilustracją może być dyfuzja radioaktywnego izotopu w walcowym pręcie (Rys. 4-1).

Rys. 4-1 Jednowymiarowy model dyfuzji z reakcją w pęcie o długości *L*. Szukane jest stężenie *c*(*x*, *t*).

Z prawa rozpadu promieniotwórczego wiemy, że jeżeli w danym momencie ilość izotopu wynosi N, to w niedużym okresie Δt ilość izotopu, który ulegnie rozpadowi jest proporcjonalna do N i Δt . Mamy więc

$$\Delta N = -kN\Delta t, \tag{4.1}$$

gdzie *k* to stała szybkości rozpadu, (s⁻¹), ΔN to ilość, która uległa rozpadowi. Ponieważ $\Delta N = N(t + \Delta t) - N(t) < 0$, więc po prawej stronie (4.1) musi być znak minus. Jeżeli podzielimy obie strony równości (4.1) przez objętość *V*, to otrzymamy zmianę stężenia (jeżeli ilość *N* izotopu była wyrażona w molach, to będzie to stężenie molowe *c*):

$$\frac{\Delta N}{V} = -k\frac{N}{V}\Delta t \implies \Delta c = -kc\Delta t \implies \frac{\Delta c}{\Delta t} = -kc, \qquad (4.2)$$

co po przejściu do granicy $\Delta t \rightarrow 0$ daje szybkość ubywania izotopu na jednostkę czasu i objętości, czyli człon reakcyjny:

$$R(c) = \frac{dc}{dt} = -kc. \tag{4.3}$$

Z drugiej strony działa proces dyfuzyjnego przemieszczania się cząsteczek izotopu, który możemy opisać prawem dyfuzji (I prawo Ficka)

$$\mathbf{J} = -D\frac{\partial c}{\partial x}.$$

Z prawa zachowania mamy $\frac{\partial c}{\partial t} = -\frac{\partial J}{\partial x} + R(c)$, gdzie J oraz R(c) dane są wzorami (4.3) i (4.4), co po wstawieniu daje następujące równanie reakcji z dyfuzją

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - kc. \tag{4.5}$$

Problem uzupełniamy warunkami brzegowymi. Na przykład zakładając, że izotop nie opuszcza pręta przyjmiemy, że na brzegach (lewym i prawym) strumień jest zero J(0, t)=0, J(L, t)=0, czyli

$$-D\frac{\partial c}{\partial x}(0,t) = 0, \quad -D\frac{\partial c}{\partial x}(L,t) = 0.$$
(4.6)

Ponadto przyjmiemy warunek początkowy taki, że w pobliżu lewego końca w chwili zerowej skupiony był izotop o stałym stężeniu:

$$c_{0}(x) = c(x,0) = \begin{cases} c_{L} & \text{dla } 0 \le x \le \frac{1}{10}L, \\ 0 & \text{dla } \frac{1}{10}L < x \le L. \end{cases}$$
(4.7)

Wykonaj obliczenia dla następujących danych:

<i>L</i> (cm)	<i>D</i> (cm ² /s)	<i>k</i> (dm³/(mol s))	<i>c</i> ^{<i>L</i>} (mol/dm ³)	czas (s)
25	2.36E-5	1.6E-6	11	1E6

Przykład 1.b) Rozważamy następujący problem dyfuzji z reakcją w układzie zamkniętym:

$$\begin{cases} \frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} + R(c), & (a) \\ \frac{\partial c}{\partial x}(0,t) = 0, & \frac{\partial c}{\partial x}(L,t) = 0, & (b) \end{cases}$$

$$(4.8)$$

z warunkiem początkowy $c(x,0) = c_{pocz}(x)$ dla $x \in [0,L]$. Użyjemy członu reakcyjnego

$$R(c) = k c (A - c).$$
 (4.9)

Model reakcji z dyfuzją, gdzie człon reakcyjny ma postać (4.9) znany jest w literaturze jako równanie Fishera. W 1937 r. R. Fisher zaproponował taki model do opisu rozprzestrzeniania się genu mającego przewagę. Widać z równania (4.9), że dla małych stężeń $R \sim (kA)c$, jest to wykładniczy wzrost. Ale gdy stężenia stają się większe ($c \rightarrow A$) pojawia się "wysycenie", bo różnica A-c zaczyna maleć do zera i przy c = A mamy R = 0. Widać też, że dla 0 < c < A człon reakcyjny jest dodatni (R(c) > 0), ale dla c > Ajest ujemny (R(c) < 0). Podsumujmy:

- jeżeli 0 < c < A, to R(c) > 0, to znaczy jest wytwarzanie (produkcja) składnika;
- jeżeli *c* > *A*, to *R*(*c*) < 0, to znaczy jest zużywanie (konsumpcja) składnika.

Może więc interpretować stałą *A* jako maksymalną pojemność środowiska. Po jej przekroczeniu reakcja zużywa składnik (zaczyna go ubywać).

Zadanie. Wykonaj symulacje z warunkiem początkowym typu skok:

$$c_{pocz}(x) = \begin{cases} c_{pocz,L} & \text{dla } x \le L/2, \\ c_{pocz,P} & \text{dla } x > L/2, \end{cases}$$
(4.10)

dla następujących danych:

<i>L</i> (cm)	<i>D</i> (cm²/s)	k (dm³/(mol⋅s))	A (mol/dm³)	<i>c_{pocz,L}</i> (mol/dm ³)	<i>c_{pocz,P}</i> (mol/dm ³)	<i>czas</i> (s)
1.2	0.001	0.02	3.5	0.5	4	80

Wyniki przedstaw w formie wykresów zależności stężenia od czasu dla wybranych czasów (s): 0 0.2 0.5 1 range(2,2,20) 30 40 50 80.

Rozwiązanie:

Najpierw równanie (1.97) (a) musimy zapisać w formie akceptowalnej przez COMSOL, tj. równania bilansu składnika wraz z odpowiednim równaniem konstytutywnym na strumień składnika:

$$\frac{\partial c}{\partial t} + \frac{\partial \Gamma}{\partial x} = R(c), \quad \Gamma = -D \frac{\partial c}{\partial x}$$
(4.11)

1. Uruchom program COMSOL Multiphysics i wybierz Model Wizard.

2. Następnie w sekcji Select Space Dimension wybierz geometrię 1D

 W sekcji Select Physics rozwiń ścieżkę Mathematics > PDE Interfaces, wybierz General Form PDE i naciśnij przycisk Add. W lewej części okna w zależności od potrzeb można zmienić nazwę zmiennej (pole tekstowe Dependent variables), która domyślnie jest oznaczona literą "u". Następnie wciśnij przycisk Study.

	Search General Form PDE (g)	
Recently Used 2 ² Poisson's Equation (noeq)	Dependent Variables	
∆u General Form PDE (g)	Field name:	u
Au Coefficient Form BDE (c)	Number of dependent variables	1
AC/DC	Dependent variables:	
))) Acoustics		
Chemical Species Transport		
W Mathematics		
▲ Δυ PDE Interfaces		
Au Coefficient Form PDE (c)		+ =
Au Wave Form PDE (g)		
Jdv Weak Form PDE (w)	Units	
▷ Δu Lower Dimensions △ ODE and DAE Interfaces	- Dependent variable quantity	
 Optimization and Sensitivity 	Dimensionless (1)	•
▷ ∇ ² Classical PDEs	- Source term quantity	
	None	-
waii Distance (wu)	Unit:	
	m^-2	
ſ	Add	
	Add	

4. W sekcji Select Study wybierz opcję Time Dependant i kliknij Done.

Select Study	Time Dependent study is used when field variables change over time. Ramples: In destromagnetics, it is used to compute transient time domain. In hest transfer, it is used to compute temperature changes over time, is nold mechanics, it is used to compute temperature changes to used to compute the time-varying propagation of pressure waves. In full diffox, it is used to compute the time-varying transfer to used to compute the time-varying propagation of pressure waves. In full diffox, it is used to compute the mechanics and the chemical composition of a reacting system.
Added study:	
Added obvice interfaces	
Added phyrics interfaces: Δυ General Form PDE (g)	
Physics	

5. Po wykonaniu poprzednich kroków otwiera się okno projektu zdefiniowanego przez wybory dokonane w ramach *Model Wizard*. Wprowadź parametry modelu (dane), które będą wykorzystywane w tym projekcie. W tym celu kliknij prawym przyciskiem myszy *Global Definitions*, znajdującym się w lewej części ekranu i wybierz z listy *Parameters*.

6. W oknie *Settings* pojawi się tabela w której możemy wprowadzić nazwy parametrów modelu podanych w treści zadania (kolumna *Name*) oraz ich wartości (kolumna *Expression*). Wartości w kolumnie *Value* są generowane automatycznie. Wprowadź parametry tak jak na poniższej grafice.

Model Builder	Setting	s			* G	raphics	Converg	ence Plot	t 1											- 8
$\leftarrow \rightarrow \uparrow \downarrow \equiv \bullet \equiv \bullet \equiv \pm \equiv \bullet$	Parameter	s			Q	QA	+ E	++	-	>	- 449 -		-		olo	8				
G Untitled.mph (root) Global Definitions	▼ Parame	eters								11						T		 		
Pi Parameters	** Name	Expression	Value	Description																
 Component 1 (comp 1) 	1	1	1																	
Geometry 1	D	0.01	0.01		_															
12 Materials	A	2.5	2.5																	
▲ Δυ General Form PDE (g)																				
General Form PDE 1																				
Initial Values 1																				
📅 Equation View																				
A Mesh 1																				
A Step 1: Time Dependent																				
Results																				
	115	- de 🗖 🤜 🗸																		
	Name																			
	1																			
	r.																			
	expression:																			
	1																			
	Description:																			
																				m
					-1		-0.8		-0.6		0.4	-0.2		0	6	.2	0.4	 0.6	0.8	

7. Utwórz geometrię. W tym celu kliknij prawym przyciskiem myszy na *Geometry 1* i z listy wybierz *Interval*.

Model Builder	Settings *	i Gr	raphics	Converg	gence Plot	1				-	_							~ 8
← → ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Geometry B build All Label: Geometry 1	•	Q 194	• 🗄	·		< #*	* 段	8 - 24			0						۵
Definitions Definitions Soft M Build All F8 Au G G Gr Finite P F Finite P Finite P	ske vakes when changing units teopth unit m Angular unit Degrees																	
▲ bt Parts >>> Bay Parts >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Admend Admende Automatic Automa																	
		4		-0.8		-0.6	-0.4		0.2	0		0.2	0.4	0.1	6	0.8	8	m

8. Nasza geometria złożona jest z dwóch odcinków: [0, *l*/2] oraz [*l*/2, *l*]. Aby je dodać do geometrii w sekcji *Interval* zmień *Number of intervals* z *One* na *Many*. Jako *Points* podaj: **0**, **l**/2, **l**. W celu sfinalizowania zadanej geometrii kliknij przycisk *Build Selected*.

Settings **	Grap	ohics	Conver	gence P	ot 1																- 8
Interval	Q	લ 🙉	• 🗄	4	• I E		- ~	-00	四 鍜	8	× 💽	1	0 1	۵ 🔒							
🖭 Build Selected 👻 🏭 Build All Objects																					
Label: Interval 1																					
▼ Interval																					
Number of intenals: Many																					
Points: 0, 1/2, 1 m line																					
Selections of Resulting Entities																					
Contribute to: None New																					
Resulting objects selection																					
Show in physics: Domain selection																					
																					m
	Settings • • •	Settings	Settings Counter Muid Statested Muid Ald Objects Late Interval Muid Ald Objects Late Interval Muid Ald Objects Counterval Muid Ald Objects Muid Ald Obje	Settings -	Settings Graphic Compare R Budd Setter - Bodd All Objects Like Interval Nonker of Interval Mary Pantes - 0,120 m m Setterions of Ruising Entities Combactes Mary Densing Entities Combactes Mary Densing Entities Setterions of Ruising Entities Combactes Densing Entities Setterions of Ruising Entities Se	Settings	Settings Bud al Objects Lade Interval Inter	Settings what setsed = B had at Objecs Labe: interval Newles of learning fatties: Conclusions: Dension patients: Dension replysics: Dension referition: Setse in physics: Dension referition: Setse in physics	Settings Bud al Objects Lade Interval Nender of levale (Marry Panter 0, 1/2) Setterions of Realing (affate: Combacter (Marry Panter 0, 1/2) Setterions of Realin	Settings Graphic Convergence Roll Cardia da da Objets Late: Interval Inter	Settings what setes a like data Objecs Lake interval interval interval Nenkes of like setes interval Setes of Relating (infile: Combacte in the setes interval Setes of Relating (infile: Setes of Relati	Settings what sete a like a l	Settings Capability Compressioner PR-11 Capability Capability Ca	Settings Capabile Compregner PR1 Capabile Compregner PR1 Campregner PR1 Capabile Compregner	Settings what all objects Lake interval int	Settings (Convergence Ref 1 Lade: Interval	Settings I for a la da	Settings	Setting: Bud all Object: Late: interval interval interval Setting: Charling Etable: Combane (Realing Etable: Combane (Realing Etable: Combane (Realing Etable: Combane (Realing Etable: Show in physics: Deman solicitien	Setting: index default and the set of the s	Setting: induced and objects take interval interval interval Settings forkulang cattels Conclusive in physice: Demain selection Settings forkulang cattels Settings forkul

9. Wprowadź równania podane w treści zadania, które chcemy rozwiązać. W tym celu lewym przyciskiem myszy kliknij węzeł *General Form PDE 1*. W oknie *Settings* wprowadź wartości odpowiednich parametrów tak, aby wbudowane w COMSOL równanie przekształcić w równanie podane w treści zadania. W polu *Damping* or *Mass Coefficient* pozostaw domyślną wartość **1**, ponieważ taki współczynnik występuje w równaniu (4.11) przy pierwszej pochodnej po czasie. W polu *Mass Coefficient* pozostaw wartość **0**, ponieważ nasze równanie nie zawiera drugiej pochodnej po czasie. W polu *Conservative Flux* wprowadź wyrażenie -**D*cx**, które

oznacza iloczyn współczynnika dyfuzji i pierwszej pochodnej cząstkowej ze stężenia po położeniu. W polu *Source Term* należy wprowadzić wyrażenie: **k*c*(A - c)**. Powinno być zaznaczone na żółto, ponieważ w projekcie nie zgadzają się jednostki. Możemy to zignorować gdyż świadomie nie używamy jednostek w tym projekcie.

Model Builder	Settings -	Graphics Convergence Plot 1	
← → 1 1 + • • II III II •	General Form PDE	④ ⑤ ⑭ ⊕ 団 ↓ ↓ = → ★ ♀ ⊕ 図 懇) ◎ ●	
 Slobal Definitions 	Label: General Form PDE 1		۵
Pi Parameters 151 Materials	▼ Domain Selection		
 Component 1 (comp 1) E Definitions 	Selection: All domains		
✓ Geometry 1 → Interval 1 (i1)			
Form Union (fin)	Active 6 30		
Au General Form PDE (g) A B General Form PDE 1	4		
B ^M Equation View P→ Zero Flux 1			
B Initial Values 1	Override and Contribution		
Meth 1	Equation		
✓ [∞] Study 1 [™] Step 1: Time Dependent	▼ Conservative Flux	·	
D 🝓 Results	<u>Г</u> -D*сх 1/m		
	Source Term		
	f k*c*(A - c)		
	Damping or Mass Coefficient		
	d _a 1 s/m ²		
	Mass Coefficient		
	e _a 0 s²/m³		
			m
		5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	-

10. Wprowadzenie warunków brzegowych. Program automatycznie zakłada zerowe wartości składowej normalnej strumienia na brzegu (punkty 1 i 3), co można sprawdzić klikając węzeł *Zero Flux 1. W*arunki brzegowe w treści zadania odpowiadają jednorodnym warunkom brzegowym Neumanna, które są domyślnymi warunkami brzegowymi w COMSOLu.

Model Builder · · · · · · · · · · · · · · · · · · ·	Settings - * * Zero Flux	Graphics Convergence Pot 1 Q. Q. Q. 会 田 山	× 1
	Labet Zero Run 1		0
	2 (not applicable) The set of a set of		
a ™ Instal Values 1 ∭ Equation View ▲ Mech 1 ▲ ∿S Step 1: Time Dependent	Verifiae and contribution Verifiae and contribution Show equation assuming: Study 1, Time Dependent Verifiae Dependent	· · · · · · · · · · · · · · · · · · ·	-
P (6) Souds	<u>(n-7-0)</u>		
		0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	- <u>m</u> 1

11. Wprowadzamy warunki początkowe. COMSOL automatycznie zakłada zerowe warunki początkowe w obu domenach (odcinkach). Możemy to sprawdzić klikając na *Initial Values 1*.

Model Builder ← → ↑ ↓ ▼ • Ⅲ Ⅲ •	Settings Initial Values	• #	Graphics Convergence Plot 1 Q </th <th>~ 1</th>	~ 1
	Lebel: Initial Values 1 Domain Selection All domains			0
A ∪ connecty 1 (d) Form Union (fin) Form Union (fin) A use General Form PDE (a) A = General Form PDE 1 A = General Form PDE 1 A = General Form PDE 1	Active	100		
lefinital Values 1 if Equation View ▲ Mesh 1	Override and Contribution Initial Values			
Kep 1: Time Dependent Results	Initial value for c: c 0 Initial time derivative of c:	1		
	dc dt 0	1/s		
			- 0 0.1 0.2 [▲] 0.3 0.4 0.5 0.6 0.7 0.8 0.9 5	

12. Aby zadać warunki początkowe typu schodkowego, prawym przyciskiem myszy kliknij General Form PDE i z listy wybierz Initial Value, w wyniku czego utworzy się nowy węzeł Initial Values 2. Aby zdefiniować warunki początkowe dla odpowiedniego przedziału należy wybrać właściwy element geometrii klikając go w oknie Graphics. Wybór ten jest możliwy jeżeli w sekcji Domain Selection, przycisk Active jest zaznaczony na niebiesko. Następnie w oknie Initial Value for c wprowadź 4. Wróć do węzła Initial Values 1 i wprowadź wartość 0.5.

Model Builder	Settings -	Graphics Convergence Plot 1 v s
← → ↑ ↓ ▼ v □↑ □↓ □ v ▲ ④ Untitled.mph (root)	Initial Values	
Cocket before on Prannets Conserve to Some 70 Conserve to So	Lute Innia Vota 2 P Domain Selection Selection Annal Active Q	G
	Override and Contribution Initial Values Main Values C	
		0 b1 b2 b3 04 b5 b6 b7 b8 b9 1

13. Po zdefiniowaniu problemu do rozwiązania w COMSOLu, tj. 1) zdefiniowaniu fizyki (wprowadzeniu równań), 2) zadaniu warunków brzegowych oraz początkowych, przystępujemy do rozwiązania numerycznego problemu. W pierwszym kroku utwórz siatkę (*Mesh*) konieczną do wykonania obliczeń. Kliknij węzeł *Mesh 1*. W sekcji *Mesh Settings* występują wielkości elementów (*Element Size*) w zakresie od *Extremely Fine* do *Extremely Coarse*. Wybrana wielkość elementów ma wpływ na dokładność rozwiązania oraz czas obliczeń. Im mniejsza wielkość elementów, tym dokładniejsze obliczenia można uzyskać, jednak wiąże się to z dłuższym czasem obliczeń. Wybierz rozmiar *Extra Fine*.

Model Builder	Settings	Graphics Convergence Plot 1 v a
$\leftarrow \rightarrow \uparrow \downarrow = \bullet \boxplus \boxplus \boxplus = \bullet$	Mesh	
	Build All Label: Mesh 1	
Component 1 (comp1)	✓ Mesh Settings	
	Separate type Physics:controlled mesh Chronot size Semmit Externedy free	
	Lota inde Fore Morent Morent Coaner Causer Data coane Extremity coane	·
		0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

14. Określenie końcowego czasu symulacji oraz poszczególnych czasów dla których program zachowa wyniki obliczeń. Można to zrobić na dwa sposoby. Pierwszy polega na określeniu początku, kroku czasowego oraz końca obliczeń. W tym celu należy nacisnąć na ikonę w sekcji *Study Settings* (ikona zaznaczona na czerwono). W oknie *Range* możemy wprowadzić czas początkowy obliczeń, krok i czas końcowy. Wciskając przycisk *Replace*, możemy zamienić domyślne wartości za pomocą wprowadzonych w tabeli. W analogiczny sposób możemy dodać inny zakres czasów, ale tym razem należy wcisnąć przycisk *Add*. Drugi sposób zadawania czasów obliczeń polega na bezpośrednim wprowadzeniu odpowiednich czasów w polu *Times*. Wprowadzone czasy należy oddzielić przecinkami lub spacjami.

Model Builder	Settings	Graphics Convergence Plot 1 v #
	Time Dependent	Q Q Q A ⊕ ⊞ ↓ ▼ = = = → ≻ # # # # # # # # #
4 🔇 Untitled.mph (root)	= Compute	
4 😳 Global Definitions	Label: Time Dependent	
Parameters	Later mill opposite	
 Component 1 (comp 7) 	 Study Settings Bange 	
Definitions	Time unit: 5	
Secondary 1 Interval 1 (7)	Entry method:	
E Form Union (fin)	times: tange(o, c, t) Step •	
Materials	Tolerance: Physics controlled Start:	
General Form PDE (g) B General Form PDE 1	Results While Solving	
▷ B→ Zero Flux 1	Physics and Variables Select Step:	
Initial Values 1	0.1	
Mesh 1	Modify physics tree and variat Stop:	
4 100 Study 1	Physics interface 1	
Step 1: Time Dependent	General Form PDE (g) Function to apply to all values: ings •	
· · · · · · · · · · · · · · · · · · ·	None	
	Panlace Add Cancel	
	Mesh Selection	
	Study Extensions	
		m
		0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

15. Wprowadź czasy: 0, 0.5, 1, 1.5, 2. Wykonaj obliczenia klikając przycisk Compute.

Model Builder	Settings	-	Graphics	phics Convergence Plot 1	× 8
$\leftarrow \rightarrow \uparrow \downarrow \mp \bullet \exists \tau \exists \iota \exists \bullet =$	Time Dependent		QQ	Q. (9, ⊕ ↓ + = = - ↓ + + + (8) (8) = ■ ⊡ ⊡ ⊡ ⊃ @ ⊕	
4 🔇 Untitled.mph (root)	= Compute				
Global Definitions Pi Parameters	Label: Time Dependent	E			9
Aderials Component 1 (comp1)	▼ Study Settings				
Definitions A Geometry 1	Time unit: s	•			
Form Union (fin)	Times: 0, 0.5, 1, 1.5, 2	s			
1 Materials	Tolerance: Physics controlled				
General Form PDE (g) D D General Form PDE 1	Results While Solving				
▷ P→ Zero Flux 1 ▷ P→ Initial Values 1	 Physics and Variables Selection 				
Equation View	Modify physics tree and variables for study step				
⊿ ∽∞ Study 1	Physics interface Sc	Ive for Discretization			
Step 1: Time Dependent Results	General Form PDE (g)	 Physics settings 	-		
	Values of Dependent Variables				
	Mesh Selection				
	Study Extensions				
					m
			0	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	0.9 1

16. Po wykonaniu obliczeń w oknie *Graphics* zostaną automatycznie wyświetlone krzywe ilustrujące obliczone rozkłady stężenia dla zadanych czasów.

Model Builder	Settings v II	Graphics Convergence Plot 1 Q Q Q Q H H III D III D III D III D III D III	~ 1
Outiled.mph (root) Global Definitions Pi Parameters	Careford Plot Labet: 1D Plot Group 1	Line Graph: Dependent variable c (1)	۵
Conclast Definition Component (norm () Component ()	Label: 10 Pise Group 1		
	 ✓ Grid ✓ Show grid 	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	1

17. Aby dodać legendę, pokazującą czasy odpowiadające poszczególnym kolorom na wykresie, w węźle *Results* rozwiń węzeł *1D Plot Group 1* i wybierz *Line Graph 1*. Następnie w sekcji *Legends* zaznacz *Show Legend* i kliknij *Plot*.

Construction of the Constr	Q Q :	9	0 =	Line Graph: Depend	ent variable c (1)			0
Precise Line Geph 1 P Data acceleration B Selection Selection Selection		4-		Line Graph: Depend	ent variable c (1)			0
I domains I doma	e c (1)	3-						0 s 0.5 s 1 s 1.5 s 2 s
	variabl							-
y-Axis Data 👘 👻 💐 🕶	ident	2-						
The state Data in the state of	u deg 0 0							
y" Tit x-i Cc Le Sho gend efic: ffic: Qi	kii Data vi k + k + e ke Joring and Syte geeds ke Automatic - ke Automatic -	tiri Data · · · · · · · · · · · · · · · · · ·	Vic Data 1 ie isito Data 1 sito Data 1 1 sito Data 1 1 series 1 1 sito Data 1 1 series 1 1 s	Vic Data -<	Vin Data No. 1 + 1 ie No. 1 + 1 sic Data No. 1 + 1	Vic Data	Vin Duta	Vic Duta

Bibliografia

- 1. Martin Eden Glicksman, Diffusion in Solids: Field Theory, Solid-State Principles, and Applications, Wiley-Interscience, 1999.
- 2. H. Mehrer, Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes, Springer, 2007.
- 3. R. W. Balluffii, S.M. Allen, W.C. Carter, Kinetics of Materials, Wiley, 2005.
- 4. J. Crank, Mathematics of diffusion, Oxford University Press, 1970.

4.2. Problem dyfuzji wzajemnej – model Darkena

Opis problemu. W uproszczonym ujęciu dyfuzja definiowana jest jako ruch masy spowodowany gradientem stężenia. Strumień *i*-tego składnika (J_i) jest skierowany w kierunku zgodnym ze spadkiem stężenia *c_i* tego składnika. Jest to pierwsze prawo Ficka (tu w jednym wymiarze)

$$\mathbf{J}_i = -\mathbf{D}_i \frac{\partial \mathbf{c}_i}{\partial \mathbf{x}}.$$
 (4.12)

Bardziej zaawansowane rozważania prowadzą jednak do wniosku, że strumień ten powinien być proporcjonalny do gradientu potencjału chemicznego μ_i tego składnika

$$\mathbf{J}_i \propto -\frac{\partial \mu_i}{\partial \mathbf{x}}.$$

Jest to związane z tym, że strumień materii skierowany w taki sposób prowadzi do *obniżenia energii swobodnej Gibbsa* co, jak wiemy z termodynamiki, jest warunkiem na samorzutność zachodzenia procesu. Oznacza to w szczególności, że w pewnych sytuacjach możemy się spodziewać strumienia dyfuzyjnego, który niekoniecznie będzie zgodny ze spadkiem stężenia wybranego składnika. Zjawisko takie zostało opisane teoretycznie i potwierdzone doświadczalnie w ciele stałym po raz pierwszy przez L.S. Darkena. W 1948 r. opublikował on pracę pt. "Diffusion of Carbon in Austenite with a Discontinuity" (*Trans. AIME* **150**, (1948), pp. 157–169) dotyczącą dyfuzji w stali z dodatkiem krzemu (układ Fe-Si-C). W tym przypadku poszczególne atomy mogą lokalnie dyfundować w kierunku przeciwnym do gradientu stężenia (ang. *up-hill diffusion*). Darken przygotował walcowe próbki stali (wysokość x średnica: 6,35 x 1,27 cm) o podobnych stężeniach węgla, ale różnych stężeniach krzemu, które potem były łączone podstawami (zespawane elektrycznie). Otrzymane pary dyfuzyjne były wygrzewane w temperaturze 1050 °C przez 13–14 dni. Krzem bardzo istotnie wpływa na aktywność węgla w stali austenitycznej co umożliwiło zaobserwowanie zwiększenia się stężenie węgla po jednej stronie złącza i zmniejszenie po drugiej mimo, że początkowe było praktycznie stałe.

Wykres (Rys. 4-2) ilustruje jeden z otrzymanych przez Darkena rozkładów stężenia węgla. Początkowy rozkład węgla jest prawie stały (0,48 i 0,45 %), ale rozkład krzemu jest istotnie różny (3,80 i 0,05 %). Końcowa dystrybucja węgla (czerwone kółka) jest wynikiem dyfuzji pod górę. Strzałkami zaznaczono końcowe stężenia procentowe węgla w pobliżu złącza.

Rys. 4-2 Rozkład stężenia węgla w parze dyfuzyjnej (na podstawie: L.S. Darken, Trans. AIME 150, 1948).

Sformułowanie problemu. Pełny opis wg modelu Darkena wymaga znajomości termodynamicznych własności układu Fe-Si-C. Chodzi przede wszystkim o współczynniki aktywności węgla w tym układzie w zależności od składu. Można jednak zaobserwować zjawisko dyfuzji pod górę w uproszczonym modelu, gdzie wprowadzamy tzw. prędkość unoszenia (dryftu) v (związaną z *efektem Kirkendalla*). Wtedy wyrażenia na strumień przyjmą postać

$$\mathbf{J}_i = -\mathbf{D}_i \frac{\partial \mathbf{c}_i}{\partial \mathbf{x}} + \mathbf{c}_i \mathbf{\upsilon}. \tag{4.14}$$

Składniki podlegają prawu zachowania (bez reakcji)

$$\frac{\partial c_i}{\partial t} + \frac{\partial J_i}{\partial x} = 0, \quad i = 1, 2, 3.$$
(4.15)

Mamy teraz dodatkową niewiadomą v, dlatego potrzebne jest jeszcze jedno niezależne równanie oprócz prawa zachowania. Z analizy efektu Kirkendalla wynika, że można przyjąć jedno z dwóch poniższych założeń (rozważamy układ trójskładnikowy):

$$c_1 + c_2 + c_3 = c = const$$
 lub $J_1 + J_2 + J_3 = 0.$ (4.16)

W celu wyznaczenia wartości v dodajmy stronami równania (4.15):

$$\frac{\partial(c_1 + c_2 + c_3)}{\partial t} = -\frac{\partial(J_1 + J_2 + J_3)}{\partial x}$$
(4.17)

Z warunku $c_1 + c_2 + c_3 = c = const$, lewa strona równania jest pochodną ze stałej, więc wynosi zero. W konsekwencji, pochodna po położeniu z sumy strumieni jest równa zero, czyli suma strumieni nie jest funkcją położenia. Oznaczmy ją jako k(t):

$$k(t) = J_1 + J_2 + J_3 = -D_1 \frac{\partial c_1}{\partial x} + c_1 \upsilon - D_2 \frac{\partial c_2}{\partial x} + c_2 \upsilon - D_3 \frac{\partial c_3}{\partial x} + c_3 \upsilon$$
(4.18)

W układzie zamkniętym strumienie na brzegu są równe zero, więc k(t)=0. Z równania (4.18) wyznaczamy prędkość unoszenia:

$$\upsilon = \frac{1}{c} \left(D_1 \frac{\partial c_1}{\partial x} + D_2 \frac{\partial c_2}{\partial x} + D_3 \frac{\partial c_3}{\partial x} \right)$$
(4.19)

Mamy zatem dyfuzję trzech składników ze strumieniami danymi wzorem (4.14) oraz prędkością unoszenia wzorem (4.19).

Warunki początkowe:

$$c_{1}(x,0) = \begin{cases} 1 & -d \le x \le 0, \\ 0 & 0 < x \le d, \end{cases}$$
$$c_{2}(x,0) = \begin{cases} 0 & -d \le x \le 0, \\ 1 & 0 < x \le d, \end{cases}$$
$$c_{3}(x,0) = 0.5 & -d \le x \le d. \end{cases}$$

Warunki brzegowe:

$$J_i(\pm d,t) = 0, i = 1,2,3.$$

Zadanie. Wykonaj symulację dla następujących danych liczbowych: $d = 1.10^{-3}$, $D_1=1.10^{-9}$, $D_2=5.10^{-9}$, $D_3=2.10^{-9}$.

Rozwiązanie:

- 1. Uruchom program COMSOL Multiphysics i wybierz Model Wizard.
- 2. W sekcji Select Space Dimensions wybierz geometrię 1D.
- 3. W *Select Physics* wybierz interfejs *General Form PDE* i kliknij *Add.* Zmień liczbę zmiennych poprzez wpisanie liczby **3** w polu tekstowym *Number of dependent variables.* Wprowadź nazwy zmiennych **c1**, **c2** i **c3**.

select Physics	Review Physics In	terface
Search	General Form PDE (g)	
Construction C	Dependent Variables	
Δυ General Form PDE (g) Δυ General Form Boundary PDE (gb) Δυ Coefficient Form PDF (c)	Field name: Number of dependent variables: Dependent variables:	3
AC/DC M) Acoustics Constant Sector M) Active Sectors Transport Model Active Model Active Active Model Active Act	Dependent vonables.	c2 c3
		+ 🗮
	Units	
	Dependent variable quantity	
	Dimensionless (1)	*
	- Source term quantity	
	None	•
	Unit:	
Added physics interfaces:		
∆u General Form PDE (g)		
dded physics interfaces:		

4. W sekcji Select Study wybierz opcję Time Dependent i zatwierdź przyciskiem Done.

Select Study	Time Dependent The Time Bependent study is used when field variables change over time. The Time Bependent study is used via compute transfer steromospace fields, including electromagnetic wave propagation in the the medianamic fields including; it is used to compute temperature changes over time. In solit mechanics; it is used to compute the time-varian field median and metion of solids subject to transient leads. In Acoustics, it is used to compute the time-varianging toposation of pressure waves. In the demain of solids subject to transient leads. In Acoustics, is the demain of solids subject to transient leads. In Acoustics, is the demain of solids subject to transient leads. In Acoustics, is the demain is used to compute the ime-variange the demain of a secting system.
Added study:	
in Time Dependent	
Added physics interfaces: ∆∪ General Form PDE (g)	
C Physics	
? Help 🗙 Cancel 🗹 Done	

 Wprowadź parametry modelu. W tym celu kliknij prawym przyciskiem myszy Global Definitions, znajdującym się w lewej części ekranu i z listy wybierz Parameters. Wprowadź parametry: d, D1, D2 oraz D3 o wartościach jak na poniższej grafice:

Model Builder ← → ↑ ↓ ∓ ~ □↑ □↓ □ ~ ✓ ℜ & 4-2.Problem.dy/uuij.vrzijemnej_model_Darkens_P1.mph (root) → © Grobu Derimitors	Settings • 1 Parameters • Parameters	Gra @ G	phics ⊾® ∉		↓ • . E)	× # ·	- 12 12	* •	•					× 1
Teamanne Teamanne	** Name Farersion Value Description d 1x-3 0.001 0.001 1x-3 0.001 0.001 0.001 1x-4 0.001 0.001 0.001 1x-4 0.001 0.001 0.001 1x-4 0.001 0.001 0.001 1x-5 0.001														
		-1		-0.8	-0.6		-0.4	-0.2	0	0.2	0.4	0.6	0.	.8	

Utwórz geometrię. W tym celu prawym przyciskiem myszy kliknij węzeł *Geometry 1* i z listy wybierz *Interval*. Zmień liczbę odcinków na *Many* i wprowadź w polu tekstowym *Points*: -d, 0, d. Zatwierdź geometrię przyciskiem *Build Selected*.

Model Builder	Settings	Grap Q Q	ohics ⊕ ⊕		L -	<u> </u>	. × 1	e ↔ ()			10					
			1	-0.	8	-0.6	-0	4	-0.2	0		0.2	0.4	0.6	0.8	×10 ⁻³ m

Zdefiniuj zmienne. Kliknij prawym przyciskiem węzeł *Definitions* i wybierz z listy *Variables*.
 Zdefiniuj zmienne c i v używając wyrażeń: c1+c2+c3 oraz 1/c*(D1*c1x+D2*c2x+D3*c3x).

Model Builder · · · · · · · · · · · · · · · · · · ·	Settings Variables	•	Graphics 역 역 와 수 없 少 • = \ ㅎ ㅎ 家 题 ㅎ ■ 회 로 つ @ 음	- 1
 	Labet Variables 1			۵
Pr Parameters 121 Materials	Geometric Entity Selection			
	Geometric entity level: Entire model Image: Active	•		
Form Union (fin)	✓ Variables			
 ▲ is denoid from POE(g) ▲ - Green form POE 1 ▲ - Zore Flax 1 ▲ A total Values 1 ▲ A total Va	Image Exercision Unit Description C c1+c2+c2+c2+c2+c2+c2+c2+c2+c2+c2+c2+c2+c2+			
	↑ ↓ = \ D = 0 + . Name	_		10 ⁻³ m
	E		· · · · · · · · · · · · · · · · · · ·	

Zdefiniuj równania. Wybierz węzeł *General Form PDE 1* i w oknie *Conservative Flux* wprowadź kolejno wyrażenia: -D1*c1x+c1*v, -D2*c2x+c2*v oraz -D3*c3x+c3*v Jako *Source Term* wprowadź 0. Inne parametry pozostaw bez zmian.

Model Builder · · · · · · · · · · · · · · · · · · ·	Settings General Form PDE			~ 1	Graphics Q. Q. Q. 会 田 シ・ 二 〇 一 大 ※ 今 服 脳 ※ 〇 国 王 つ 図 日	*
 R_4-2_Problem_dyfuzji_wzajemnej_model_Darkena_P1.mph (root) Global Definitions 	Label: General Form PDE	1		2	C C C C C C C C C C C C C C C C C C C	
Pi Parameters	▼ Domain Selection					
 Component 1 (comp 1) E Definitions 	Selection: All domains					
a= Variables 1 View 1	1 2			% + ita −		
▲ A Geometry 1 → Interval 1 (ci) ■ Former (fin)	Active			€ 100 ⊕		
Materials						
General Form PDE 1 General Form PDE 1	Override and Contri	bution				
P-Initial Values 1	Equation					
▲ ^>> Study 1	 Conservative Flux 				· · · · · · · · · · · · · · · · · · ·	
Step 1: Time Dependent See Results	-D1*c1x+c1*v			1/m		
	Γ -D2*c2x+c2*v			1/m		
	-D3*c3x+c3*v			1/m		
	▼ Source Term					
	0			1/m ²		
	f 0			1/m ²		
				1/m²		
	 Damping or Mass 0 	oefficient				
	1	s/m² 0	s/m ² 0	s/m²		
	d. 0	s/m² 1	s/m ² 0	s/m²	10.9	
	0	s/m² 0	s/m ²	s/m²	-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1	-

9. Wprowadź warunki brzegowe. Program automatycznie przyjmuje zerowe wartości strumienia na brzegu (punkty 1 i 3), co można sprawdzić klikając przycisk *Zero Flux 1*. Wygenerowane automatycznie warunki są takie same jak w treści zadania.

10. Zdefiniuj warunki początkowe. Wybierz *Initial Values 1* i wprowadź **1** jako wartość początkową zmiennej *c1* oraz **0.5** dla *c3*.

Model Builder	Settings Initial Values	• #	Graphics Q Q 魚 令 田 小・ 二言一 六 ※ 母 殿 殿 ※ 回 国 コ @ 目	*
A Status R. 4-2_Problem_dyfuzji_wzajemnej_model_Darkena_P1.mph (root)	Label: Initial Values 1	9		
Pi Parameters 121 Materials	▼ Domain Selection			
✓ — Component 1 (comp1) ✓ ≡ Definitions a= Variables 1	Selection: All domains	+		
	Active 2	100		
General Form PDE 1 Zero Flux 1 Junital Values 1	Override and Contribution			
A Mesh 1	 Initial values 			
Study 1 Marcology Step 1: Time Dependent Marcology Step 1: Time Dependent	Initial value for c1:	1		
	hitial value for c2: c2 0	1		
	Initial value for c.s: c3 0.5 Initial time derivative of c1:	1		
	del o	1/s		
	Initial time derivative or c.c. $\frac{dc_2}{dt} = 0$	1/s		
	Initial time derivative of c3:	1/s		
	or -	ł	x10 ⁻⁴ n	m

11. Kliknij prawym przyciskiem General Form PDE 1 i z listy wybierz Initial Values. W oknie Graphics wybierz drugi odcinek i wprowadź wartość 1 dla zmiennej c2 oraz wartość 0.5 dla c3. W ten sposób Initial Values 1 definiują warunki początkowe dla pierwszego odcinka, a Initial Values 2 dla drugiego.

Model Builder ···	Settings -	٠	Graphics @ @ @ @ 🗄 🌵 🕶	= = - >	<	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C 3 2	۵ 🔒				~ 8
	Label: Initial Values 2	•										۵
ii) Parameters iii) Actional → C - Concent II (up 0) → U - Validate I ↓ Valida I → C - Validate I ↓ Valida I → C - Construct I → Interval I (0) iii) Materials ↓ Autoconsol Ferm POE (g) → Autoconsol Ferm POE (g)	Contain Selection Advaut Adve Adve											
General Form PDE 1 B Zero Flax 1 E Initial Values 1 Initial Values 2	Override and Contribution Initial Values											_
Mesh 1 Mos Study 1 Step 1: Time Dependent	Initial value for c1: c1 0 1 Initial value for c2: 1					- (_
	c2 1 1 Initial value for c3:											
	C3 0.5 1 Initial time derivative of c1: Add											
	Initial time derivative of c2:	/s										
	t 0 1	/s										
	∂3 0 1	/s _		0.6	.0.4	.0.2		0.2	×	0.6		×10 ⁻³ m
			-* -0.0	-0.0		-V. 6	•	W- 6	v	0.0	0.0	

12. Po zadaniu fizyki i określeniu warunków brzegowych i początkowych, musimy utworzyć siatkę numeryczną. W tym celu kliknij węzeł *Mesh 1.* Następnie w sekcji *Mesh Settings* wybierz *Finer* jako *Element size* i zatwierdź przyciskiem *Build All*.

13. Zdefiniuj czas symulacji oraz czasy dla których zostaną zapisane wyniki. W oknie Times wprowadź: **0, 200, 600, 1000** i uruchom symulację przyciskiem *Compute*.

Model Builder ← → ↑ ↓ ∓ • Ⅲ* Ⅲ• Ⅲ •	Settings Time Dependent	÷ 1	Graphics ଵ୍ବ୍ଜ୍⊕⊞	↓ • = = → >	x # # 國 题	× 🖬 🖻 🔊	0			* 1
	Label: Time Dependent	Ø								۵
	Study Settings Time unit: (0, 200, 600, 1000) Times: (0, 200, 600, 1000) Totranee: Physics controlled	• s [
Horm Union (fin) Auterials Auterials General Form PDE (g) B_ General Form PDE 1 B_ Tarre Form 1	Results While Solving Physics and Variables Selection									
	Nodary prysics the and variables for study step Physics interface Solve for General Form PDE (g) Physics setting	s •	_ .							_
Kesults	Values of Dependent Variables Mesh Selection study Extensions									
	7 JUU EARIBUIS									
										×10 ⁻³ m
			1 0	0.8 -0.6	-0.4 -0.2	0	0.2 0.4	0.6	0.8	'n

14. Po wykonaniu obliczeń w oknie Graphics zostaną wyświetlone krzywe ilustrujące rozkład stężenia składnika 1 dla zadanych czasów. Dodaj legendę do wykresu. W sekcji Results rozwiń 1D Plot Group 1 i kliknij na węzeł Line Graph 1. Następnie w sekcji Legends zaznacz opcję Show Legend, wprowadź Prefix c1_ i naciśnij przycisk Plot.

Model Builder	Settings ••	Graphics Convergence Plot 1 v a
← → ↑ ↓ ∓ • Ⅲ Ⅲ •	Line Graph	Q. Q. 🙊 🖽 🛄 🗮 🔲 🚳 🖨
A & R_4-2_Problem_dyfuzji_wzajemnej_model_Darkena_P1.mph (root)	C Plot	line Graph: Dependent variable (1 (1)
Pi Parameters	Label: Line Graph 1	
Materials Component 1 (comp1)	- Data	
✓ Component ((comp i))		
a= Variables 1	Data set: From parent • 10	
A Geometry 1	Selection	
Interval 1 (i1)	Selection: All domains	0.8
Haterials	Mar 1 -	
▲ Δu General Form PDE (g) Beneral Form PDE 1	2	0.7
P→ Zero Flux 1	Active 🛍	a
Initial Values 1 Initial Values 2	ψ	t 0.6
Mesh 1		
▲ \sigma Study 1 eq:stars 1: Time Dependent	• v-Axis Data	0.5
Solver Configurations		den
A Contraction of the set of the s	Expression:	5. 0.4
11 Derived Values	Unit	
Tables	1	0.3
Line Graph 1	Description:	
S Report	Dependent variable c1	V-6
	b Title	0.1
	which Data	
	p Paus Data .	0-
	Coloring and Style	
	▼ Legends	-0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008
	Show legends	
	Legends: Automatic	Messages Progress Log Table v # ×
	Pretic CL	7
	Suffic:	COMSOL Multiphysics 5.3.0.316

15. Aby pokazać stężenia trzech składników na jednym wykresie, kliknij prawym przyciskiem myszy węzeł 1D Plot Group 1 i z listy wybierz Line Graph. W nowo utworzonym Line Graph 2, w oknie Selection wybierz All Domains. Jako y-Axis Data Expression wprowadź c2, a jako x-Axis Data wybierz Expression i wprowadź x. w sekcji Legends zaznacz opcję Show Legend, wprowadź Prefix c2_ i naciśnij przycisk Plot.

Model Builder	Settings -	Graphics Convergence Plot 1 v II
$\leftarrow \rightarrow \uparrow \downarrow \mp \star \equiv \pm \equiv \pm \equiv \star$	Line Graph	Q Q A A H III = 🔲 🙍 🖨
 R_4-2_Problem_dyfuzji_wzajemnej_model_Darkena_P1.mph (root) Global Definitions 	Call Plot Selection: All domains	Line Graph: Dependent variable c1 (1) Line Graph: Dependent variable c2 (1)
tit Materials		
 Component 1 (comp 1) 	2	1
Definitions	Active	
View 1	ф	0.9-
Geometry 1		
Interval 1 (i1) Energy Union (fin)		0.8-
:: Materials	👻 y-Axis Data ា 🖬 👻 🐂 🐂	
▲ Δυ General Form PDE (g)	(Truning)	0.7
En General Form PDE 1	expression:	
n Initial Values 1	line.	0.6-
- Initial Values 2		
⊿o Mesh I ⊿ ∽⊗ Study 1		0.5
Step 1: Time Dependent	Description:	
Solver Configurations	Dependent variable cz	
Nesurs Data Sets	> Title	0.4
#哲 Derived Values 開 Tables	👻 x-Axis Data 👜 👻 💺 🗸	0.3
4 ~ 1D Plot Group 1	Parameter:	
ine Graph 1	Expression •	0.2
Can Export	Expression:	
Reports	x	0.1-
	Unit:	
	m •	
	Description:	
	x-coordinate	-0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008
	Coloring and Style	x-coordinate (m)
	▼ Legends	Messages Progress Log Table - # ×
	Show legends	X
	Legends: Automatic	COMSOL Multiphysics 3.3.0316
	Prefix c2	saved the cw_pysakykar-ounc_crist modecommeter modes in the sincere_r_Problem_dytug_wageming_mode_Datkena_P1.mph Finalized geometry has 2 domains and 3 boundaries.
	0.46-	Complete mesh consists of 23 domain elements.
	Suffice	Number of begrees of freedom solved for: 1/1 (plus 12 internal DUFs). Solution time (Ninke 10:1 e

16. W ostatnim kroku powtórz powyższe operacje dla składnika **c3**, wprowadzając w legendzie *Prefix* **c3**_.

Model Builder + → + 1 = + = + = + + + + + + + + + + + + +	Settings	Oraphic Convergence Plot 1 Q Q D Une Graph: Dependent variable c1 (1) Une Graph: Dependent variable c2 (1) Une Graph: Dependent variable c2 (1) Une Graph: Dependent variable c3 (1) 0
Interval 1(0) Born (0) Born (0	yAsis Data Berraion d y v % v % v tot Deciption Dependent vasible c tot Tate	0.8
i Balana	victor Data victor Da	0.3 0.2 0.2 0.000 0.0002 0.0004 0.0005 0.0005 0 0 0.0008 0.0002 0.0002 0.0004 0.0006 0.0008 Mussages Progress Log Table - + × - + × COMING Moders/prot 5.3.018 Stroker, 42, Problem, 45, 42, Problem,

Bibliografia

- 1. Martin Eden Glicksman, Diffusion in Solids: Field Theory, Solid-State Principles, and Applications, Wiley-Interscience, 1999.
- 2. R. Filipek, Modelowanie dyfuzji w układach wieloskładnikowych, Ceramika tom. 90, Polskie Towarzystwo Ceramiczne, 2005.
- 3. J.S. Kirkaldy, D.J. Young, Diffusion in the Condensed State,. Institute of Metals, London, 1987.
- 4. L.S. Darken, Trans. AIME, tom. 180, 1948, str. 430.

4.3. Problem dyfuzji wzajemnej - model Onsagera

Wprowadzenie. Teoria sformułowana przez Larsa Onsagera w latach 30. XX wieku, stanowi jeden z fundamentów współczesnej termodynamiki procesów nierównowagowych. Za swoją pracę dotyczącą procesów nierównowagowych, a zwłaszcza za odkrycie tzw. *relacji przemienności Onsagera* otrzymał on Nagrodę Nobla w dziedzinie chemii w 1968 roku. Teoria ta odnosi się do procesów transportowych, takich jak przewodnictwo cieplne, dyfuzja materii czy przepływ elektryczny, które zachodzą w układach znajdujących się blisko równowagi termodynamicznej. Główne założenie polega na tym, że w takich układach strumienie wielkości fizycznych są liniowo zależne od "sił" termodynamicznych⁸. Siły termodynamiczne to wielkości, które wywołują procesy transportowe, np. gradient temperatury, gradient potencjału chemicznego (gradient stężenia dla układów termodynamicznie idealnych) czy potencjału elektrycznego. Strumienie termodynamiczne są zatem reakcjami układu na działanie sił termodynamicznych.

Teorię Onsagera można także wykorzystać do opisu procesu dyfuzji wzajemnej. Strumień dyfuzji składnika *i* jest ogólnie kombinacją liniową gradientów potencjałów chemicznych wszystkich składników:

$$J_{i} = -\sum_{j=1}^{n} L_{ij} \frac{\partial \mu_{j}}{\partial x}, \quad i = 1, \dots, n,$$

$$(4.20)$$

gdzie *n* to liczba składników, a L_{ij} to tzw. współczynniki fenomenologiczne. Onsager udowodnił ich symetrię, $L_{ij} = L_{ji}$. Potencjał chemiczny μ_i *i*-tego składnika można wyrazić za pomocą aktywności, a_i :

$$\mu_i = \mu_i^0 + RT \ln a_i. \tag{4.21}$$

Dla roztworów rozcieńczonych, współczynnik aktywności $\gamma_i = 1$, zatem $a_i = c_i$. W konsekwencji strumienie (4.20) przyjmują postać:

$$J_{i} = -\sum_{j=1}^{n} \frac{RTL_{ij}}{c_{j}} \frac{\partial c_{j}}{\partial x}, \quad i = 1, \dots, n$$
(4.22)

Wyrażenia RTL_{ij} / c_j w powyższym wzorze można interpretować uogólnione współczynniki dyfuzji D_{ij}

Sformułowanie problemu. Rozważmy problem dyfuzji wzajemnej w układzie trójskładnikowym o stężeniach c_1 , c_2 , c_3 . Strumienie składnika 1 i 2 wynoszą:

$$J_1 = -D_{11}\frac{\partial c_1}{\partial x} - D_{11}\frac{\partial c_2}{\partial x}, \quad J_2 = -D_{21}\frac{\partial c_1}{\partial x} - D_{22}\frac{\partial c_2}{\partial x}.$$

Podczas dyfuzji w cele stałym możemy dla uproszczenia przyjąć, że całkowita objętość próbki jest stała. W przypadku układu zamkniętego prowadzi to do zależności $c_1 + c_2 + c_3 = c_{tot} = const$. Rozwiązywać zatem będziemy problem (równania bilansu bez reakcji – por. (1.26)):

⁸ Nie są to siły w rozumieniu mechaniki klasycznej. Dlatego w literaturze polskiej używa się czasami określenia *bodźce termodynamiczne*.

$$\frac{\partial c_1}{\partial t} = -\frac{\partial}{\partial x} \left(-D_{11} \frac{\partial c_1}{\partial x} - D_{11} \frac{\partial c_2}{\partial x} \right),$$

$$\frac{\partial c_2}{\partial t} = -\frac{\partial}{\partial x} \left(-D_{21} \frac{\partial c_1}{\partial x} - D_{22} \frac{\partial c_2}{\partial x} \right),$$

$$c_1 + c_2 + c_3 = c_{tot}.$$
(4.23)

z warunkami początkowymi:

$$c_{1}(x,0) = \begin{cases} 5 & 0 \le x \le l/2, \\ 9.5 & l/2 < x \le l, \end{cases}$$
$$c_{2}(x,0) = \begin{cases} 8 & 0 \le x \le l/2, \\ 19 & l/2 < x \le l, \end{cases}$$

i brzegowymi:

$$\frac{\partial c_i}{\partial x}(0,t) = 0, \quad \frac{\partial c_i}{\partial x}(\ell,t) = 0, \quad i = 1,2,3.$$

Zadanie. Wykonaj symulację dla następujących danych liczbowych:

$$D_{11} = 22 \cdot 10^{-11} \text{ cm}^2/\text{s}; D_{12} = 7.6 \cdot 10^{-11} \text{ cm}^2/\text{s}; D_{21} = 7.8 \cdot 10^{-11} \text{ cm}^2/\text{s}; D_{22} = 12.6 \cdot 10^{-11} \text{ cm}^2/\text{s}, c_{tot} = 100$$

Rozwiązanie:

- 1. Uruchom program COMSOL Multiphysics i wybierz Model Wizard.
- 2. W sekcji Select Space Dimensions wybierz geometrię 1D.
- 3. W *Select Physics* wybierz interfejs *General Form PDE* i kliknij *Add.* Zmień liczbę zmiennych poprzez wpisanie **2** w polu tekstowym *Number of dependent variables.* Wprowadź nazwy zmiennych **c1** i **c2**.

Select Physics	Review Physics Interface
Search	General Form PDE (g)
Recently Used Du General Form PDE (g)	Dependent Variables
マプ Poisson's Equation (poeq) Δυ General Form Boundary DDE (gb) Δυ Coefficient Form PDE (c) N Acoustics Image: Species Transport Image: Spec	Field name: Number of dependent variables: Dependent variables: +
Jdv Weak Form PDE (w)	Units
Development Dev	Dependent variable quantity
© Optimization and Sensitivity	Dimensionless (1)
▷ ∇ ² Classical PDEs	Source term quantity
	None 🔻
waii Distance (wd)	Unit:
	m^-2
Add	
Added physics interfaces:	
Au General Form PDF (g)	

- 4. W sekcji Select Study wybierz opcję Time Dependent i zatwierdź przyciskiem Done.
- 5. Wprowadź parametry modelu. Kliknij prawym przyciskiem *Global Definitions* i z listy wybierz *Parameters*. Wprowadź do tabeli dane zgodnie z poniższą grafiką:

Model Builder	Setting	js		-	Graphics	Convergence F	lot 1								~ 8
$\leftarrow \rightarrow \bot \uparrow \bullet \bullet \blacksquare \blacksquare \blacksquare \bullet \bullet$	Parameter	rs			Q Q (9)	🕀 🖽 🌵			🖶 💽 🕅 🕴	e 💽 💽 🐮 🤋					
Songer.mph (root) Global Definitions	▼ Param	neters													۵
Parameters To Parame	Name D1 D1 D2 D2 D2 D2 I I Expression: Ium Description	Sperming Ext (Sperming) 145: 15(perming) 145: 15(perming) 145: 15(perming) 10:45: 15(perming) 10:45	040 232 to m ⁴ /r 766 64 m ⁴ /s 148 64 m ⁴ /s	Description		0.8	-0.6	-0.4	-0.2	- 6	0.2	0.4	0.6	0.8	m

 Wykonaj geometrię. W tym celu prawym przyciskiem myszy kliknijmy węzeł *Geometry* 1 i z listy wybierz *Interval*. Zmień liczbę odcinków na *Many* i wprowadź w polu *Points*: 0, 1/2, 1. Zatwierdź geometrię przyciskiem *Build All*.

• • • • • • • • • • • • • • • • • • •	ler - = Sr	ilder 😪 🐐 Settings 👻	# Grap	ohics Conver	gence Plot 1									~ 1
Comparently froot Comparently froot Comparently froot Comparently froot Comparent Compa	F + TT TA II +	F ▼ III III ▼ Interval	Q	a 🔉 🖶 🎛	4-1	$\blacksquare - \neg \times$	** *		C 🗉 🗷	ia 🖶				
Addabasis	h (root) efinitions meters Lab	umph (roto) Build Selected G Build All Objects Build Selected G Build All Objects arameters Labet: Interval 1	0											۵
Derdicion	rials rent 1 (comp 1)	daterials sponent 1 (comp I) v Interval												
• Manuals • A stands • Stands • Stands • Manuals • A stands • Stands	itions netry 1 iterval 1 (i7) orm Union (fm)	Definitions Number of intervals: Many • Intervals (16.0) Points: 0, V2, I m												
	rials eral Form PDE (g)	Vaterials Vaterials Vaterial Form PDE (g)												
i ← Johd Values 1 If Geneting edgets selection A Area 1 A Area 1 Beneting edgets selection Beneting edg	eneral Form PDE 1 Co	General Form PDE 1 Contribute to: None New												
A [™] Study 1 Dis App 1 Finns Dependent B Bendts	itial Values 1 quation View	local Values 1 local Va												
107	b Time Dependent	And 1: Times Dependent Art												×10 ⁴ m
b b.1 b.2 b.3 b.4 b.5 b.6 b.7 b.8 b.9 1				6	0.1	0.2	0.3 0).4	0.5	0.6	0.7	0.8	0.9	1

 Zdefiniuj równania. Wybierz węzeł General Form PDE 1 i w oknie Conservative Flux wprowadź wyrażenia: -D11*c1x-D12*c2x oraz -D21*c1x - D22*c2x. Jako Source Term wprowadź 0 (brak reakcji). Inne parametry pozostaw bez zmian.

Model Builder	Settings			• #	Graphics C	onvergence Plot	:1								× 1
← → ↑ ↓ ∓ • Ⅲ Ⅲ •	General Form PDE				Q Q A (• 🕀 🕁 •	= 🗖 -	× -00 -00		• • • •	o 🙆 🖶				
4 🔇 Osanger.mph (root)	Labak General Form PI	F1		- -											
Global Definitions Descentes:	Caper of the office of the off	•.													-
Materials	 Domain Selection 														
 Component 1 (comp 1) 	Selection: All domain	5													
Definitions	[mm] 1		~	+											
Interval 1 (if)	2		in .	-											
E Form Union (fin)	Active		6												
Materials A Au General Form PDF (a)			¢												
General Form PDE 1															
E Zero Flux 1															
P Initial Values 1	Override and Cont	ribution													
A Mesh 1	Equation														
Study 1	 Conservative Flux 														100
Results	0111-1- 0121-2-	1													
	Г 		- 1	/m											
	-021°C1X-022°C2X)		/m											
	 Source Term 														
	0		1	m²											
	f		1	m²											
	 Damping or Mass 	Coefficient													
	_ 1	s/m² 0	5	m²											
	<i>a</i> _a 0	s/m² 1	s	m²											
	 Mass Coefficient 														
	e countratin														
	e, 0	s*/m* 0	\$7)	m'											×10 ⁻⁶ m
	0	s²/m² 0	5	m*	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1

8. Wprowadź warunki brzegowe. COMSOL automatycznie przyjmuje zerowe wartości strumienia na brzegu (punkty 1 i 3), co można sprawdzić klikając przycisk *Zero Flux 1.* Wygenerowane domyślne warunki tym z treści zadania.

Model Builder	Settings	Graphics Convergence Plot 1
	Zero Flux	
Model Darkena.mph (root)		
🔺 🌐 Global Definitions	Label: Zero Flux 1	6
Pi Parameters	Boundary Selection	
Component 1 (comp1)		
▲	Selection: All boundaries	
a- Variables 1	🚾 1 🔪 +	
A View 1	2 (not applicable)	
- Interval 1 (i1)	Active 3	
Form Union (fin)	Ψ	
Materials A Our General Form PDF (a)		
Beneral Form PDE 1		
Zero Flux 1	Override and Contribution	
 Initial Values 1 Equation View 	▼ Equation	
A Mesh 1	Show equation assuming:	
4 no Study 1	Study 1, Time Dependent	
Step 1: Time Dependent	$-\mathbf{n} \cdot \Gamma = 0$	
		×10' ³ m
		-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

9. Zdefiniuj warunki początkowe. Wybierz *Initial Values 1* i wprowadź **5** jako początkową wartość zmiennej *c1* oraz **8** dla zmiennej *c2*.

Model Builder	Settings • 1	٠	Graphics Convergence Plot 1
Osanger.mph (root) Global Definitions	Initial Values Labet: Initial Values 1		
P. Parametes Statuesis → C. Component (Tomp 0) → T. Bedrinkon → P. Component (Tomp 0) → Betranis → Internal (Tomp 0) → Internal	Comain Selection Selection Mill domains		
	Override and Contribution Initial Values Initial value for c1:		
P 🧠 Results	c1 5 1 Initial value for c2: 2 8 1		
	Initial time derivative of c1: $\frac{dc1}{dt} = 0$ 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	/s	
	<u>dc2</u> 0 1/	/s	
		ł	x10 ⁴ m 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10. Kliknij prawym przyciskiem General Form PDE 1 i z listy wybierz Initial Values. W oknie Graphics wybierz drugi odcinek i wprowadź 8.5 jako początkową wartość zmiennej c1 oraz 19 dla zmiennej c2. W ten sposób Initial Values 1 definiują warunki początkowe dla pierwszego odcinka, a Initial Values 2 dla drugiego.

Model Builder	Settings - •	Graphics Convergence Plot 1 v 8
←→↑↓▼・即副目・	Initial Values	QQQ + + + = = - + + + + + + + + + + + + + +
Osanger.mph (root) Global Definitions	Label: Initial Values 2	
Materials	▼ Domain Selection	
 Component 1 (comp 1) 	Estadore Manual	
Definitions	Selection: Manual	
A Geometry 1	2	
Form Union (fin)		
11 Materials	Active Distance	
4 Δυ General Form PDE (g)	Ψ	
D =− General Form PDE 1 D =− Zero Elver 1		
Entitial Values 1		
Initial Values 2	Override and Contribution	
A Mark 1	 Initial Values 	
4 100 Study 1	Initial value for c1:	
A Step 1: Time Dependent	c1 85	
P 🝋 Kesults	Initial value for c2:	
	(2 19)	
	Initial time derivative of c1:	
	dc1 0	
	de 1/3	
	Initial time derivative of c2:	
	0 dc2 dt 0 1/s	
		×10 ⁻⁶ m
		0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

11. Utwórz siatkę numeryczną. W tym celu kliknij przycisk *Mesh 1.* Następnie w sekcji *Mesh Settings* wybierz *Finer* jako *Element size* i wygeneruj siatkę klikając *Build All.*

Model Builder	Settings **	Graphics Convergence Plot 1
	Mach	
4 🧶 Oreann mark (mail)	Build All	
4 Global Definitions		
Pi Parameters	Label: Mesh 1	
1 Materials		
 Component 1 (comp 7) 	 Mesh Settings 	
Definitions	Sequence type:	
Interval 1 GD	Physics-controlled mesh •	
Form Union (fin)	Flement size:	
11 Materials	Finar	
A Δυ General Form PDE (g)		
Beneral Form PDE 1		
R Initial Values 1		
Initial Values 2		
Equation View		
ZA Mesh 1		
A Step 1: Time Dependent		• • • •
🗈 🝓 Results		
		×10* m
		0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

12. Zdefiniuj czas symulacji oraz czasy dla których mają być zapisane wyniki. W oknie *Times* wprowadź: **0**, **1**, **10**, **100**, **1000** i uruchom symulację przyciskiem *Compute*.

Model Builder	Settings		- 1	Graphics Cor	overgence Plot									× 1
$\leftarrow \rightarrow \uparrow \downarrow = \bullet \equiv \equiv \equiv \equiv = +$	Time Dependent			Q Q @ +	1 ····		×							
4 🔇 Osanger.mph (root)	Compute C Update Solution											-		-
4 🗐 Global Definitions														
Pi Parameters	Label: Time Dependent		2											
Materials	 Study Settings 													
Definitions														
4 🖄 Geometry 1	Time unit: s		•											
interval 1 (i1)	Times: 0, 1, 10, 100, 1000		s 🔜											
Form Union (fin)	Tolerance: Physics controlled		•											
4 Qu General Form PDE (a)														
General Form PDE 1	Results While Solving													
D → Zero Flux 1	· Physics and Variables Selection													
Initial Values 1 Initial Values 2	Modify physics tree and variables for study sti	ep.												
If Equation View	19 m i i i i													
Mesh 1	Physics interface	Solve for	Discretization											
A Study I	General Form PDE (g)		Physics settings •						· · ·	•••	• • •		· · ·	-
D The Solver Configurations	b. Values of Dependent Variables													
🔺 🍓 Results	values of Dependent variables													
Data Sets	Mesh Selection													
Tables	Study Extensions													
1D Plot Group 1														
Seport 5														
N Reports														
				- L				.						×10, m
				0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1

13. Dodaj legendę do wykresu. W sekcji *Results* rozwiń 1D Plot Group 1 i kliknij Line Graph 1. W sekcji Legends zaznacz opcję Show Legend. Ponieważ celem zadania jest zaprezentowanie rozkładu stężeń dla wszystkich składników na jednym wykresie, zmodyfikujmy legendę. W oknie Prefix wprowadź c1_ i zatwierdź przyciskiem Plot.

14. Aby dodać wykres dla składnika 2 kliknij prawym przyciskiem myszy węzeł 1D Plot Group 1 i z listy wybierz Line Graph. W utworzonym Line Graph 2, w oknie Selection wybierz All Domains. Jako y-Axis Data Expression wprowadź c2, a jako x-Axis Data wybierz Expression i wprowadź x. Podobnie jak w przypadku składnika 1 dodaj legendę z prefiksem c2. Wyświetl nowy wykres klikając Plot.

15. W ostatnim etapie dodaj wykres dla składnika 3. Prawym przyciskiem myszy kliknij 1D Plot Group 1 i z listy wybierz Line Graph. W utworzonym Line Graph 3, w oknie Selection wybierz All Domains. W polu y-Axis Data Expression wprowadź wyrażenie 100-c1-c2, a w polu x-Axis Data wybierz Expression i wprowadź x. Analogicznie jak w przypadku składników 1 i 2 dodaj legendę z prefiksem c3_. Wyświetl wykres klikając Plot.

Model Builder	Settings	*	* # Graphics Convergence Plot 1
	Line Graph		9, 9, 9, FF 💷 🔚 👩 🖨
	Car Pact	•	Une Graph: Dependent variable 1 (1) Line Graph: Dependent variable 2 (1) Line Graph: 100-01-2 (1) 85 90 91
Form Union (fin)			75
▲ Δυ General Form PDE (g) ▷ P General Form PDE 1 ▷ Q Eero Flux 1	▼ y-Axis Data	4.4	65
	Expression Unit: 1 0ecription 1 0ecription 1 0ecription 1 0ecription 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*	60-
In Tables	> Inte ▼ x-Axis Data	4.1	35
L Line Graph 1 T∼ Line Graph 2 Contine Graph 2 Graph	Parameter Expression Unit Decorption 	•	
	Coloring and Style Legends		Messages Progress Log Table - + + ×
	⊘ Show legends Legends Automatic Prefar: Staffa:	•	Sociation time (Jourdy 1): 0 15: Sociation time (Jourdy 1): 0 15: Training of the Sociation of the Sociati

Bibliografia

- 1. Martin Eden Glicksman, Diffusion in Solids: Field Theory, Solid-State Principles, and Applications, Wiley-Interscience, 1999.
- 2. J.S. Kirkaldy, D.J. Young, Diffusion in the Condensed State,. Institute of Metals, London, 1987.
- 3. S.R. de Groot, P. Mazur, Non-equilibrium thermodynamics, North-Holland, Amsterdam, 1962.

4.4. Problem transportu ciepła w pręcie

Wprowadzenie. Modelowanie procesów transportu ciepła odgrywa kluczową rolę w inżynierii, fizyce i naukach przyrodniczych, umożliwiając zrozumienie i optymalizację wymiany energii w różnorodnych systemach. Transport ciepła obejmuje przewodzenie, konwekcję i promieniowanie, a jego analiza ma zastosowanie w takich dziedzinach jak przemysł energetyczny, projektowanie budynków, inżynieria materiałowa i technologie medyczne. Na przykład w energetyce modelowanie transportu ciepła pomaga w optymalizacji wydajności wymienników ciepła i reaktorów jądrowych. W budownictwie pozwala na projektowanie izolacji termicznej oraz systemów HVAC (ang. *heating, ventilation, air conditioning*), co wpływa na efektywność energetyczną budynków. Z kolei w biomedycynie modelowanie przewodzenia ciepła jest wykorzystywane w planowaniu terapii termicznych, takich jak hipertermia onkologiczna.

Rozważmy pręt o promieniu *r* i długości $d \gg r$ (Rys. 4-3). W COMSOLu nie ma żadnego problemu, aby wyznaczyć rozkład temperatury przy różnych warunkach brzegowych w całej objętości pręta jako funkcję T(x, y, z, t), ale dla ilustracji możliwych uproszczeń rozważymy sytuację gdzie pomijamy zmienność temperatury w każdym poprzecznym przekroju. Przyjmujemy, że powierzchnia boczna pręta nie jest zaizolowana (ciepło przez nią przenika) i strumień ciepła przez nią spełnia *prawo stygnięcia Newtona*:

$$\boldsymbol{n} \cdot \boldsymbol{J}_{a} = \boldsymbol{h}_{a} \cdot (T - T_{ot}), \tag{4.24}$$

gdzie h_q to przenikalność cieplna powierzchni bocznej pręta, a T_{ot} to temperatura otoczenia.

Rys. 4-3 Transport ciepła w pręcie o długości *d* i promieniu *r*, w którym ciepło może przenikać przez powierzchnię boczną.

Bilans energii cieplnej dla małego walca pomiędzy x a $x+\Delta x$ w krótkim przedziale czasu [t, $t+\Delta t$] może być zapisany następująco:

$$(\pi r^2 \Delta x) \rho c_w (T(x, t + \Delta t) - T(x, t))$$

$$\approx J_q(x, t) \pi r^2 \Delta t - J_q(x + \Delta x, t) \pi r^2 \Delta t - h_q (T(x, t) - T_{ot}) 2\pi r \Delta x \Delta t,$$
(4.25)

gdzie ρ jest gęstością materiału, z którego jest wykonany pręt. Równość (4.25) wynika stąd, że objętość małego walca wynosi $\pi r^2 \Delta x$ (podstawa × wysokość), zatem jego masa jest równa ($\pi r^2 \Delta x$) ρ . Ponadto całkowita ilość ciepła przechodzącego przez przekrój poprzeczny dla *x* wynosi $J_a(x,t)\pi r^2 \Delta t$, a dla $x+\Delta x$

wynosi $J_q(x + \Delta x, t)\pi r^2 \Delta t$. Jednocześnie energia cieplna zgromadzona w tym małym walcu może przenikać przez jego boczną ściankę, której powierzchnia to (obwód okręgu o promieniu r) × (wysokość), czyli $2\pi r\Delta x$. Mnożąc pole powierzchni bocznej przez strumień otrzymujemy ostatni składnik bilansu po prawej stronie. Dzielimy obie strony bilansu (4.25) przez $\Delta x \Delta t$ co daje

$$\pi r^2 \rho c_w \frac{\Delta T}{\Delta t} \approx -\frac{J_q(x + \Delta x, t) - J_q(x, t)}{\Delta x} \pi r^2 - h_q(T - T_{ot}) 2\pi r.$$

Przechodzimy do granicy $\Delta t \rightarrow 0$, $\Delta x \rightarrow 0$ oraz dzielimy obie strony przez πr^2 otrzymując

$$\rho c_{w} \frac{\partial T}{\partial t} = -\frac{\partial J_{q}}{\partial x} - \frac{2h_{q}}{r} (T - T_{ot}).$$
(4.26)

Zauważmy, że na powyższe równanie możemy patrzeć jak na bilans energii (w jednym wymiarze) z dodatkowym członem reakcyjnym $R_a = -(2h_a / r)(T - T_{ot})$.

W przypadku gdy rozkład temperatury jest stacjonarny ($\partial T/\partial t = 0$), a strumień ciepła spełnia prawo Fouriera ($J_q = -k\nabla T$), to równanie (4.26) przechodzi w równanie

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) = \frac{2h_q}{r} (T - T_{ot}), \qquad (4.27)$$

gdzie k jest współczynnikiem przewodności cieplnej materiału (W/(m·K)), z którego wykonany jest pręt.

Sformułowanie problemu. Rozważmy problem transportu ciepła w pręcie opisany równaniem (4.27). W projekcie przyjmiemy, że materiał jest niejednorodny i przewodność cieplna *k* zależy liniowo od położenia

$$k = k_0 \left(1 + x \,/\, d \right). \tag{4.28}$$

Z lewej strony pręt jest w kontakcie ze zbiornikiem ciepła o stałej temperaturze T_L , co opisuje warunek brzegowy Dirichleta (Rys. 4-4)

$$T(0) = T_{L}, \tag{4.29}$$

a prawy brzeg pręta jest izolowany, co wyraża warunek brzegowy Neumanna

 $-k^{\partial T}(d) = 0$

$$-k\frac{\partial T}{\partial x}(d) = 0.$$
(4.30)
warunek brzeg. $T = T_L$
warunek brzeg. $\mathbf{n} \cdot (-k\nabla T) = 0$
d

Temperatura początkowa w całym pręcie jest stała i wynosi

$$T(x,0) = T_{ot}.$$
 (4.31)

Zadanie 1. Wykonaj symulację rozkładu temperatury oraz gradientu temperatury w stanie <u>stacjonarnym</u> w pręcie stosując bilans (4.27) dla następujących danych (Uwaga! Przenikalność cieplna h_q jest dalej oznaczana symbolem V):

$$k_0 = 60; d = 1.5; T_L = 70; T_{ot} = 50; r = 0.25; V = 20.$$

Rozwiązanie:

1.

- 1. Uruchom program COMSOL Multiphysics i wybierz Model Wizard.
- 2. W sekcji Select Space Dimensions wybierz geometrię 1D.
- 3. W *Select Physics* wybierz interfejs *General Form PDE* i kliknij *Add.* W polu tekstowym *Dependent variables* wprowadź **T**.

4. W sekcji Select Study wybierz Stationary i zatwierdź klikając Done.

Added study:	
Stationary	
Added physics interfaces:	
Δυ General Form POE (g)	

5. Wprowadź parametry. Kliknijmy prawym przyciskiem na *Global Definitions* i z listy wybierz *Parameters*. Wprowadź do tabeli dane zgodnie z poniższą grafiką:

Model Builder	Settings	Graphics G	onvergence Plot	t 1	X-1 - 00 - 00	100 X01 _ An		a A				~ 8
Model Buildel	Securitys * Parameters * * Mane Specifican Value 00 00 0 15 15 15 14 00 00 14 00 00 15 15 15 14 00 00 00 15 15 15 14 10 00 00 10 10 10 00 00 10 10 10	<u><u></u> <u><u></u></u> <u><u></u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u></u>	÷ ⊞ ↓ •		~							
A ben'i >> Societ } } € Benti Benti	↑ ↓ ⇒ b ⊇ ≫ * Nane Mo Expension Observation	1	-0.8	0.6	-0.4	.	0	0.2	0.4	0.6	0.8	m

6. Wykonaj geometrię. Prawym przyciskiem myszy kliknij węzeł *Geometry* 1 i z listy wybierz *Interval*. Jako *Right endpoint* wprowadź **d**. Utwórz geometrię klikając *Build All*.

Model Builder	Settings	- #	Graphics Convergence Plot 1	~ 1
← → ↑ ↓ ∓ • □ 11 11 •	Interval		Q Q Q ⊕ ⊞ ↓ • ⊟ − → ≻ ⊕ ⊕ ∰ ∰ ⇔ ∎ ⊠ Ē ⊃ @ ⊕	
	🖭 Build Selected 🔻 🏙 Build All Objects			
Pi Parameters	Label: Interval 1	3		
Materials Component 1 (comp 1)	▼ Interval			
Definitions	Number of intervals: One	•		
Interval 1 (7)	Left endpoint: 0	m	δ	
Form Union (fin)	Right endpoint: D	m	1	
	 Selections of Resulting Entities 			
En Zero Flux 1	Contribute to: None • New			
Equation View	Resulting objects selection			
Mesh 1	Show in physics: Domain selection -			
E Step 1: Stationary			<u> </u>	
P 🧠 Kesuits				
				m
		l	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4	1.5

7. Zdefiniuj zmienną *k*. Kliknij prawym przyciskiem myszy na węzeł *Definitions* i wybierz z listy *Variables*. W tabeli wprowadź nazwę zmiennej **k** oraz jej wyrażenie **k0*(1+x/d)**.

Model Builder	Settings *	Graphics Convergence Plot 1 v a
↔ → ↑ ↓ ▼ • Ⅲ Ⅲ Ⅲ •	Variables	
Solution A Global Definitions	Labet Variables 1	٥
Pi Parameters	Geometric Entity Selection	
	Geometric entity level: Entire model v	
Form Union (fin)	▼ Variables	
Bill Materials can BIS (g) → Concerner BIS (g) → Zeo Flux 1 → Teoplan Water A Statistical Water 1 → Statisti	Name Expression Unit Description Voit Description m	
	† ↓ ≕ ∖ 10 ⊡ 40 •	

 Zdefiniuj równanie transportu ciepła. Wybierz węzeł General Form PDE 1 i w oknie Conservative Flux wprowadź wyrażenie -k*Tx. Jako Source Term wprowadź 2*V*(T-Tot)/d. Inne parametry pozostaw bez zmian.

Model Builder	Settings	Graphics Convergence Plot 1
← → ↑ ↓ ₩ • Ⅲ Ⅲ •	General Form PDE	
	Label: General Form PDE 1	•
Pi Parameters	▼ Domain Selection	
 Component 1 (comp1) Entitional period 	Selection: All domains	
View 1 View 1 A A Geometry 1 Interval 1 (7)	Active	
Form Union (fin) Materials Δu General Form PDE (α)	Φ	
General Form PDE 1	Override and Contribution	
D P→ Zero Flux 1	Equation	
Bequation View	▼ Conservative Flux	
▲ Mesh 1 ▲ **> Study 1 ▷ Start 1: Stationary	[1] -k*1k [1/m	
A Results	▼ Source Term	
	f 2"V"(T-Tot)/D	
	 Damping or Mass Coefficient 	
	d _a 1 s/m	
	 Mass Coefficient 	
	e ₈ 0s ² /m	
		m
		0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

9. Wprowadź warunki brzegowe. COMSOL automatycznie przyjmuje zerowe wartości strumienia na brzegu, co można sprawdzić klikając przycisk *Zero Flux 1*. W przypadku prawego brzegu jest to zgodne z treścią zadania.

Model Builder ← → ↑ ↓ ▼ • □↑ □↓ □ •	Settings Zero Flux	•	Graphics Convergence Plot 1 - Q </th <th>#</th>	#
	Luck Zer fur 1 []			
(<u>-2cerbar</u>) → Equator View → Stay) + ≥ Sape 5 Satismay ≥ Rest:	 Portraids and Contribution Equation Shore separation strumming Shore (Salowany n. Γ = 0 	•	•	
			0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5	Ţ

 Na lewym brzegu (x=0) musimy zdefiniować stałą temperaturę. Kliknij prawym przyciskiem na General Form PDE i wybierz z listy Dirichlet Boundary Condition. W polu Prescribed value of T wprowadź TL.

Model Builder	Settings **	Graphics Convergence Plot 1	- 1
$\leftarrow \rightarrow \uparrow \downarrow \mp \star \exists \tau \exists t \exists t = \star$	Dirichlet Boundary Condition		
Transport ciepla 1D.mph (root) Global Definitions	Label: Dirichlet Boundary Condition 1		۵
Pi Parameters	▼ Boundary Selection		
 Component 1 (comp1) Entitions 	Selection: Manual *		
a= Variables 1 ▷ ₩ View 1 ▲ A Geometry 1			
Form Union (fin)	Ф		
Au General Form PDE (g) General Form PDE 1			
P Zero Flux 1	Diverride and Contribution		
Dirichlet Boundary Condition 1	Equation		
St ^{er} Equation View	Dirichlet Boundary Condition	•	
4 no Study 1	Prescribed value of T		
E Step 1: Stationary	r 11. 1		
		0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5	 5

11. Zdefiniuj warunki początkowe. Wybierz Initial Values 1 i wprowadź Tot jako Initial Value for T.

Model Builder	Settings -	Graphics Convergence Plot 1	- 1
	Initial Values Label: Initial Values 1 Domain Selection		
	Statetor Attomins Attom 1 Active E		
i [™] - General Form FDE 1 [™] - Zeer Flux 1 [™] - Foolad Waters 1 [™] - General Konger 2 [™] - General Condition 1 [™] - Ge	Override and Contribution Initial Values Initial Values T Tet Initial from deniative of T: 1	·	
i 🔍 Results	<u>dī</u> <u>0</u> 1		
		0 61 62 63 64 65 66 67 68 69 1 1.1 1.2 1.3 1.4 1.5	m

12. Utwórz siatkę numeryczną. Kliknij węzeł *Mesh 1, n*astępnie w sekcji *Mesh Settings* wybierz *Finer* jako *Element size* i utwórz siatkę klikając *Build All*.

Model Builder	Settings		Graphics Convergence Plot 1	\sim 1
$\leftarrow \rightarrow + + = - = = = = + = + = + = + = + = + =$	Mesh	0	QQ @ ⊕ ⊡	
4 (Transport ciepla 1D.mph (root)	Build All	-	,	13
Global Definitions Pi Parameters	Label: Mesh 1	3		-
1 Materials	- Mark Calling			
 Component 1 (comp1) Example 1 	* Mesh settings			
a Variables 1	Sequence type:			
View 1	Physics-controlled mesh •	•		
interval 1 (i1)	Cierce Ci			
Form Union (fin)	- Title			
4 Δu General Form PDE (g)				
Beneral Form PDE 1 Beneral Form 1				
P Initial Values 1				
Dirichlet Boundary Condition 1 Bid Equation View				
(Mesh 1)				
4 100 Study 1				
Step i: stationary A Results				
		-		
			· · · · · · · · · · · · · · · · · · ·	19

13. Ponieważ jest to zagadnienie stacjonarne, nie musimy definiować czasu symulacji. W sekcji *Study 1* kliknij *Compute*. Po wykonaniu obliczeń, w oknie Graphics automatycznie zostanie wyświetlony rozkład temperatury w pręcie w stanie stacjonarnym.

Model Builder • ← → ↑ ↓ ▼ • □1 □↓ □ • ▲ ③ Tanspot cisple 10 mph (rect) • ● Gobal Definitions • ● Parameters •	Settings	Gi Q	aphics
Component 1 (comp1)			81 -
	Generate default plots Generate convergence plots Store solution for all intermediate study steps		80
E Form Union (fin)	 Information 		
A Cancel Com PEC(p) A Concel Com PEC(p) A Concel Com PEC(p) A Concel Com PEC(p) B Concel Concel Concel Concel Concel	Les compution time O s	Dependent variable T (1)	78 77 76 75 72 72 72 72 72 72 72 72 72 72

14. Dodaj wykres gradientu temperatury. Prawym przyciskiem myszy kliknij 1D Plot Group 1 i z listy wybierz Line Graph. W utworzonym Line Graph 2, w oknie Selection wybierz All Domains. W polu tekstowym y-Axis Data Expression wprowadź Tx, a jako x-Axis Data wybierz Expression i wprowadź x. Wyświetl wykres klikając Plot.

Zadanie 2. Projekt z Zadania 1 rozwiąż dla stałego współczynnika przewodzenia $k = k_0$. Uzyskane rozwiązanie numeryczne porównaj z rozwiązaniem analitycznym problemu (4.27)–(4.31) danym wzorem:

$$T(\mathbf{x}) = T_{ot} + (T_L - T_{ot}) \left(\frac{e^{\sqrt{\frac{2h_q}{k_0 r}}\mathbf{x}}}{1 + e^{2\sqrt{\frac{2h_q}{k_0 r}}d}} + \frac{e^{-\sqrt{\frac{2h_q}{k_0 r}}\mathbf{x}}}{1 + e^{-2\sqrt{\frac{2h_q}{k_0 r}d}}} \right)$$

Bibliografia

- 1. F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley, 2006.
- 2. ASHRAE Handbook, *Fundamentals*. American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2017.
- A. Bejan, Convection Heat Transfer, Wiley, 2013.
- 3. J. P. Holman, Heat Transfer, 10th ed., McGraw Hill, New York, 2009.
4.5. Problem transportu ciepła w pierścieniu

Wprowadzenie. W tym przykładzie zostanie przedstawiony dwuwymiarowy model transportu ciepła. W pierwszym wariancie pierścień, w którym zachodzi transport ciepła jest wykonany z jednorodnego materiału, natomiast w drugim wariancie pierścień wykonany jest z dwóch materiałów, różniących się właściwościami.

Sformułowanie problemu. Rozważmy następujący problem transportu ciepła w pierścieniu eliptycznym, geometra 2D (Rys. 4-5):

Rys. 4-5 Geometria 2D dla modelu transportu ciepła wraz z oznaczeniem brzegów.

Transport ciepła opisany jest równaniem

$$\rho C_{p} \frac{\partial T}{\partial t} + \nabla \cdot \mathbf{J} = \mathbf{0}, \qquad \mathbf{J} = -\lambda \nabla T = \left(-\lambda \frac{\partial T}{\partial x}, -\lambda \frac{\partial T}{\partial y}\right), \tag{4.32}$$

gdzie λ to współczynnik przewodności cieplnej (W/(m·K)).

W zagadnieniu rozpatrujemy warunki brzegowe typu Dirichleta:

zewnętrzny brzeg ($\partial \Omega_1$): T = 25 °C

wewnętrzny brzeg (
$$\partial \Omega_2$$
): T = 60 °C

Warunki początkowe: stały rozkład temperatury w całym pierścieniu w chwili zero

$$T(x,y,0) = 25 \,^{\circ}C$$

Zadanie 1. Wykonaj symulację rozkładu temperatury w stanie niestacjonarnym:

$$T = T(x,y,t), (x,y) \in \Omega$$

Przyjmij że ośrodek w jakim zachodzi transport ciepła wykonany jest z żeliwa:

$$\lambda$$
 = 50 W/(m·K); C_p = 420 J/(kg·K); ρ = 7000 kg/m³

Jako wymiary elipsy zewnętrznej należy przyjąć półosie a = 6 cm, b = 10 cm. Wewnętrzna elipsa jest dwukrotnie mniejsza.

Rozwiązanie:

- 1. Uruchom program COMSOL Multiphysics i wybierz Model Wizard.
- 2. W sekcji Select Space Dimensions wybierz geometrię 2D.

 W Select Physics wybierz interfejs General Form PDE i kliknijmy Add. Zmień oznaczenie zmiennej na T. Wybierz Temperature (K) jako Dependant variable quantity oraz Heat source (W/m^3) jak Source term quantity.

elect Physics	Review Physics Interface
	earch General Form PDE (g)
△ General Form PDE (g)	Dependent Variables
	Field name: u
Δu Coefficient Form PDE (c)	Number of dependent variables: 1
Laminar Flow (spf)	Dependent variables:
I) Acoustics	
Chemical Species Transport Fluid Flow	
III Heat Transfer	
P === Structural Mechanics P △µ Mathematics	+ 🗮
	Units
	Dependent variable quantity
	Source term quantity
	Heat source (W/m^3)
	Add
dded physics interfaces:	
Au General Form PDE (g)	

- 4. W sekcji Select Study wybierz opcję Time Dependent i zatwierdź przyciskiem Done.
- Wprowadź parametry. Kliknij prawym przyciskiem na Global Definitions i z listy wybierz Parameters. Wprowadź do tabeli dane zgodnie z poniższą grafika. Jednostki należy wprowadzić w nawiasach kwadratowych []. UWAGA! Możesz pominąć wpisywanie jednostek (NIEZALECANE), jednak wtedy wartości WSZYSTKICH parametrów muszą być wyrażone w jednostkach SI.

Model Builder ← → ↑ ↓ ∓ • III III •	Settings Parameters	・ Graphics		
4 (i) Global Definitions		1 m		
Parameters Parameters Generation 1 (comp 1) B = Definitions Geometry 1	* Name Expression Value Description Iambda 50 (W/m/K) 50 W/(m/k) 50 W/(m/k) Cp 420 (Vkg/K) 420 //kg/k)	0.0		
 ▲ Δυ General Form PDE (g) ▶ a General Form PDE 1 ▶ a Zero Flux 1 	a 6(cm) 0.06 m b 10(cm) 0.1 m			
Emilial Values 1 Equation View Mesh 1		0.4		
		0.2		
		o ⁻		
		-0.2		
	↑↓ ⇒ ∖ ≫ ⊟ mir • Name b	-0.4		
	Expression: 10[cm]	0.6		
		1		

 Wykonanie geometrii. Prawym przyciskiem myszy kliknij węzeł Geometry 1 i z listy wybierz Ellipse. Jako a-semiaxis i b-semiaxis wprowadź odpowiednio a i b. Utwórz geometrię klikając Build Selected.

Dodaj kolejną, mniejszą elipsę. Jako *a-semiaxis* i *b-semiaxis* wprowadź odpowiednio 0.5*a i 0.5*b. Utwórz geometrię klikając *Build Selected*.

8. Aby uzyskać pierścień, wykonaj operację logiczną odejmowania mniejszej elipsy od większej. Prawym przyciskiem myszy kliknij węzeł *Geometry 1* i z listy wybierz *Booleans and Partitions>Difference*. Jako *Objects to add* wybierz większą elipsę, a jako *Objects to subtract* mniejszą elipsę. Operację zatwierdź klikając *Build Selected*.

9. Zdefiniuj równanie transportu ciepła. Wybierz węzeł *General Form PDE 1* i w polu *Conservative Flux* wprowadź odpowiednio wyrażenia **-lambda*Tx** oraz **-lambda*Ty** dla składowych *x* i *y*. W

polu tekstowym *Source Term* wprowadź **0**. W polu *Damping or Mass Coefficient* wprowadź wyrażenie **rho*Cp**.

10. Zdefiniuj warunki początkowe. Wybierz *Initial Values 1* i wprowadź **25[degC]** jako wartość początkową zmiennej **T**.

11. Wprowadzenie warunków brzegowych. COMSOL domyślnie przyjmuje zerowe wartości strumienia na brzegu, jednak jest to nie zgodne ze sformułowaniem modelu. Kliknij prawym przyciskiem *General Form PDE 1* i z listy wybierz *Dirichlet Boundary Conditions*. W oknie *Graphics* wybierz brzeg wewnątrz pierścienia i wprowadź **25[degC]** w polu tekstowym *Prescribed value of T*.

12. Analogicznie wprowadź drugi warunek brzegowy typu Dirichleta dla zewnętrznego brzegu. Tym razem wartość zmiennej **T** wyniesie **60[degC]**.

13. Utwórz siatkę numeryczną. Kliknij węzeł *Mesh 1*, następnie w sekcji *Mesh Settings* wybierz *Finer* jako *Element size* i zatwierdź klikając *Build All*

14. Zdefiniuj czas symulacji oraz czasy dla których mają być zapisane wyniki. W polu *Times* wprowadź wyrażenie **range(0,1,100)** i w sekcji *Results While Solving* zaznacz opcję *Plot*. Uruchom symulację klikając *Compute*.

15. Po wykonaniu obliczeń automatycznie zostanie wygenerowany 2D Plot Group, który zawiera rozkład temperatury. W sekcji Data możesz zmieniać czasy, dla których będą wyświetlane wyniki.

	Settings ZD Plot Group	Graphics Convergence Plot 1	- 1
Transport ciepla 2D.mph (root) Global Definitions Pl Parameters	Cer Plot ← → Label: 2D Plot Group 1	Time=100 s Surface: Dependent variable T (x)	•
	✓ Data Data set: Study 1/Solution 1 (sol1)	0.08-	,
Ellipse 1 (e1) Ellipse 2 (e2) Difference 1 (d(f1) Errer Lingen (fin)	Time (s): 100 > Tible	0.06-	
I Materials ▲ Δυ General Form PDE (g) ■ General Form PDE 1	Plot Settings View: Automatic	0.04	3
Discrete Flux 1	x-axis labet y-axis labet y-	0.02	C.
Meth 1	Propagate hiding to lower dimensions Plot data set edges	0	i.
Solver Configurations Solver Configurations Besults Data Sets	Color Black • Frame: Material (X, Y, Z) •		0
#10 Derived Values 11 Tables 12 20 20 Coreu 1 13 Constanting Co	✓ Color Legend ✓ Show legends		
Reports	Show maximum and minimum values Show units Position: Right	0.08	1
	Text color: Black Number Format	0.1	ĉ
	b Window Settings	-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 m	

Zadanie 2. Rozważ proces transportu ciepła w geometrii 2D podobny jak w poprzednim zadaniu. Układ został zmodyfikowany poprzez dodanie dwóch warstw o różnym przewodnictwie cieplnym:

Warstwa zaznaczona na zielono wykonana jest z miedzi, natomiast warstwa czerwona z tlenku glinu. Grubość obydwu warstw jest taka sama i wynosi 1 cm. Wykonaj symulację rozkładu temperatury T(x,y,t) dla tak zmodyfikowanego układu, korzystając z równań oraz z warunków początkowych i brzegowych podanych w poprzednim zadaniu. W obliczeniach przyjmij następujące dane:

 $\lambda_{A12O3} = 27$; $\lambda_{Cu} = 400 \text{ W/(m·K)}$; $Cp_{A12O3} = 900$; $Cp_{Cu} = 385 \text{ J/(kg·K)}$; $\rho_{A12O3} = 3900$; $\rho_{Cu} = 8960 \text{ kg/m}^3$

Rozwiązanie:

1. Zadanie wykonaj modyfikując projekt z poprzedniego zadania. W pierwszym kroku wprowadź nowe dane do tabeli *Parameters*. Dla czytelności projektu warto opisywać znaczenie parametrów wprowadzając komentarz w kolumnie *Description*.

Ducket Source Detungs • To Life - To Life	Madel Dulles	Collinso	- Complete Company Ret 1
•••••••••••••••••••••••••••••	Model Builder	settings	• Graphics Convergence Proc 1
• • • • • • • • • • • • • • • • •	← → ↑ ↓ ₩ • Ⅲ Ⅲ Ⅲ •	Parameters	0, 0, 9, 0, 1
Uncode Composition Compositio	Solution Global Definitions	▼ Parameters	
III 20 Per Group 1 Imma III 20 Per Group 1 Expersion III 20 Per Group 1 Expersion III 20 Per Group 1 Biologing (m3) Description: -0.05 Ca -0.05	 The speech cipits 20 zmody Researcy range (rest) The speech cipits 20 zmody Researcy range (rest) The speech cipits 20 zmody Researcy range (rest) The speech cipits 20 zmody Researcy (rest) <li< td=""><td>P Jarameters ** Nume Specifies ** Operation Value ** Operation Value ** Operation Value * Operation 400 (hpg) * Operation 400 (hpg) * Operation 000 (hpg) * Operation 0.1 m * Operation 0.1 m * Operation 0.0 m</td><td></td></li<>	P Jarameters ** Nume Specifies ** Operation Value ** Operation Value ** Operation Value * Operation 400 (hpg) * Operation 400 (hpg) * Operation 000 (hpg) * Operation 0.1 m * Operation 0.1 m * Operation 0.0 m	
			-0.1 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

 Zmodyfikuj geometrię. W tym celu prawym przyciskiem myszy kliknijmy węzeł Geometry 1 i z listy wybierz Ellipse. Zmień Object Type z Solid na Curve. Jako a-semiaxis i b-semiaxis wprowadź odpowiednio 0.5*a+d i 0.5*b+d. Zatwierdź geometrię klikając Build Selected.

Model Builder	Settings •	Graphics Convergence Plot 1
	Ellipse	Q Q A + H ↓ ▼ Ø = = = = ↓ Ø Ø = 0 <pø 0<="" =="" p=""> Ø = 0 Ø = 0 Ø = 0 Ø = 0<</pø>
Transport ciepla 2D zmodyfikowany.mph (root) Golobal Definitions Parameters Hanniels	Build Selected - 🔡 Build All Objects	
Component 1 (comp1)	▼ Object Type	
Definitions		0.08
Geometry 1	lype Curve	
 Ellipse 1 (e1) Ellipse 2 (e2) 	 Size and Shape 	
Difference 1 (dif1)		0.06
Ellipse 3 (e3)	a-semiaxis: U.S'a+d m	
Form Union (fin)	b-semiaxis: 0.5*b+d m	0.04
A Au General Form RDF (a)	Sector angle: 360 deg	
General Form PDE 1	* Dorition	
Zero Flux 1	- POMON	0.02
Initial Values 1	Base: Center •	
Dirichlet Boundary Condition 1	x: 0 m	
Equation View	v 0 m	
A Mesh 1		
4 no Study 1	 Rotation Angle 	-0.02
E Solver Configurations	Rotation: 0 deg	
4 💽 Results		-0.04
Data Sets	Eavers	
En Derived Values	 Selections of Resulting Entities 	
D Plet Group 1	Contributator None • New	-0.06
C Export		
E Reports	Kesulting objects selection	1900
	Show in physics: Domain selection	
		-0.1
		-0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

3. Podziel na pół wewnętrzną elipsę. W tym celu prawym przyciskiem myszy kliknij węzeł *Geometry 1* i z listy wybierz *Line Segment.* Jako *Start Vertex* oraz *End Vertex* wybierz punkty zaznaczone na poniższej grafice. Wybór zatwierdź klikając *Build Selected.* Następnie utwórz kolejny *Line Segment* po drugiej stronie geometrii.

Model Builder	Settings ••	Graphics Convergence Plot 1 v a
← → ↑ ↓ ∓ • Ⅲ Ⅲ ■ •	Line Segment	
	Build Selected Build All Objects Label: Line Segment 1	0.1
	Start Point Specify: Vertex	0.00
© Ellipse 2 (e2) © Ellipse 2 (e2) Ellipse 3 (e3)	Mert verte:	0.06
Form Union (fin)	+ 188 (P)	0.04
Au General Form PDE (g) General Form PDE 1 Ecro Flux 1	Endpoint Specify: Vertex	0.02
Dirichlet Boundary Condition 1 Dirichlet Boundary Condition 2 W ⁴ Equation View	End verte:	
Mesh 1 Study 1 Study 1 Step 1: Time Dependent	Active + N (P)	0.02
Contigurations A Results Data Sets Derived Values	Yelections of Resulting Entities Contribute to: None None None	
17 Tables 20 Plot Group 1 20 Export	Resulting objects selection Show in physics: Boundary selection	-0.06
🛤 Reports		-0.08
		-0.1

4. W drugim etapie zmień równania transportu ciepła. Kliknij prawym przyciskiem General Form PDE (g) i z listy wybierz General Form PDE. W oknie Graphics wybierz górną półelipsę. W polu tekstowym Conservative Flux wprowadź wyrażenia -lambda1*Tx oraz -lambda1*Ty. W polu Source Term wpisz 0. W polu Damping or Mass Coefficient wprowadź rho1*Cp1.

Model Builder	Settings **	Graphics Convergence Plot 1
← → ↑ ↓ ∓ • Ⅲ Ⅲ •	General Form PDE	Q, Q, Q, \$\# ↓ + Ø = = = = ≥ \$ Ø = \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
 ▲	Label: General Form PDE 2	
	Selection: Manual	0.08
	Active	
Line Segment 2 (b2)	> Override and Contribution	0.02
Content of the PDE 1 Content of the PDE 1	Conservative Flux	
General Form PDE 2 General Form PDE 2		-0.02
as mean i ▲ ~ \$ Study 1 ▲ Study 1 ▲ Suby 1 ► Solver Configurations	f 0 W/m ³ v Damping or Mass Coefficient	-0.04
 ✓ ≪ Results ▷ III: Data Sets ♥ Daiva Sets ♥ Daiva Values ♥ Tables 	d _a tho1*Cp1 J/(m ⁴ ⋅K) ▼ Mass Coefficient	0.06
■ 20 Pict Group 1	e _a 0 kg/(msk)	4.08 -0.1 -0.16 '-0.14 '-0.12 '-0.1 '-0.08 '-0.06 '-0.04 '-0.02 '0.04 '0.06 '0.08 '0.1 '0.12 '0.14 '

 Analogicznie dodajmy drugie *General Form PDE* dla domeny reprezentującą miedź. W oknie *Graphics* wybierz dolną półelipsę. W polu *Conservative Flux* wprowadź wyrażenia -lambda2*Tx oraz -lambda2*Ty. W polu *Source Term* wpisz 0. W polu *Damping or Mass Coefficient* wprowadź rho2*Cp2.

- 6. Ponieważ zadanie to jest wykonywane poprzez modyfikację poprzedniego projektu, warunki początkowe i brzegowe są już zadane i nie wymagają korekty.
- 7. Siatka numeryczna oraz czasy obliczeń są takie same jak w poprzednim projekcie i nie wymagają modyfikacji. Uruchom obliczenia klikając *Compute*. Na wygenerowanym wykresie rozkładu temperatury można zauważyć wpływ dodatkowych warstw o różnych właściwościach cieplnych.

Model Builder	Settings v # Graphics	ss Convergence Plot 1
	ZD Plot Group Q, Q, d G Plot ← →	(유 원 : 사 · · · · · · · · · · · · · · · · · ·
Pi Parameters Standard Component 1 (comp 7)	Labet 2D Plot Group 1 0.1	
E Definitions A Geometry 1 Seliment 1 (#7)	Data set: Study 1/Solution 1 (sol1) • 1	
Ellipse 2 (e2) Difference 1 (dif1)	Time (s): 100 • 0.06 -	
Line Segment 1 (b 1)	Plot Settings O.04	
Form Union (fun) Materials Auguage General Form PDE (g)	View Poulonanc	
General Form PDE 1 E Zero Flux: 1 E Initial Values 1	y-ans label:	
Dirichlet Boundary Condition 1 Dirichlet Boundary Condition 2 General Form PDE 2	Propagate many to over demensions ✓ Plot data set deges Chi Di data set deges	. 315
General Form PDE 3 Hore Equation View Anderb 1	Cotor: Back0.02 - Frame: Material (X, Y, Z) -	
▲ *** Study 1 ▲ Step 1: Time Dependent	▼ Color Legend -0.04 -	,
Results Data Sets	Show legends O.06 Show maximum and minimum values	
Tables	Position: Right -0.08 - Text color: Black	
📆 Reports	Number Format O.1 Mindow Sattings	

Bibliografia

- 1. F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley, 2006.
- 2. S.V. Patankar, *Numerical Heat Transfer and Fluid Flow*, Hemisphere Publishing, 1980.
- 3. A. Bejan, Convection Heat Transfer, Wiley, 2013.
- 4. J. P. Holman, Heat Transfer, 10th ed., McGraw Hill, New York, 2009.

4.6. Problem dyfuzji w polikrysztale

Opis problemu. W przeciwieństwie do gazów i cieczy, dyfuzja w polikryształach może zachodzić różnymi ścieżkami. W przypadku monokrystalicznych ciał stałych głównym mechanizmem transportu masy w objętości jest dyfuzja sieciowa (ang. *lattice diffusion*), natomiast w ciałach polikrystalicznych, ze względu na obecność różnych elementów mikrostruktury, dyfuzja sieciowa nie jest jedyną możliwością. Analizując mikrostrukturę jednofazowego polikrystalicznego materiału ceramicznego możemy wyróżnić co najmniej trzy elementy wpływające na transport masy:

- krystaliczne ziarna, w których zachodzi dyfuzja sieciowa;
- granice ziaren, po których również zachodzi dyfuzja (ang. boundary diffusion);
- pory, które zachowują się jako blokady dyfuzji.

Defekty w budowie polikryształów, takie jak: granice ziaren, swobodne powierzchnie oraz dyslokacje, cechują się mniejszą gęstością upakowania atomów, przez co dyfuzja w tych obszarach zachodzi szybciej (współczynniki dyfuzji są większe niż dla dyfuzji sieciowej) i w konsekwencji uznawane są jako ścieżki szybkiej dyfuzji. Dlatego opis transportu w ciele polikrystalicznym za pomocą jednego współczynnika dyfuzji jest niewystarczający. O ile stosunkowo łatwo można znaleźć w literaturze wartości współczynników dyfuzji w cieczach, gazach oraz monokrystalicznych ciałach stałych, to dla ciał polikrystalicznych wymagana jest dodatkowa informacja o mikrostrukturze, ponieważ elementy mikrostruktury wpływają na całkowitą dyfuzję w materiale. Dlatego konieczne jest powiązanie współczynnika dyfuzji z szeregiem parametrów opisujących jego mikrostrukturę. Przykładem takiego podejścia jest model Fishera uwzględniający w procesie transportu także dyfuzję po granicach ziaren.

Analiza zjawiska w przestrzeni 2D lub 3D pozwala na uwzględnienie wpływu budowy mikrostruktury materiału, m.in. kształtu i rozmiaru ziaren, liczby granic międzyziarnowych na transport. W ramach projektu wykonamy symulację dyfuzji w polikrysztale, jako proces transportu w ośrodku dwufazowym (ziarna i granice ziaren) o modelowej geometrii 2D.

Sformułowanie problemu. Rozważmy problem dyfuzji w polikrysztale w geometrii 2D (Rys. 4-7):

Rys. 4-7 Schemat procesu dyfuzji w polikrysztale w geometrii 2D.

Układ składa się z czterech monokrystalicznych ziaren (prostokąty o wymiarach $d \ge H$) oraz z trzech granic międzyziarnowych (o wymiarach $a \ge H$). W obu fazach zachodzi proces dyfuzji, opisany pierwszym prawem Ficka:

$$\frac{\partial c}{\partial t} + \nabla \cdot \mathbf{J} = 0. \tag{4.33}$$

Strumienie dyfuzji dla ziaren (J_Z) oraz granic międzyziarnowych (J_{GB}) będą wynosiły odpowiednio:

$$\mathbf{J}_{z} = -D\nabla c = \left[-D\frac{\partial c}{\partial x}, -D\frac{\partial c}{\partial y}\right] \text{ oraz } \mathbf{J}_{GB} = -D_{GB}\nabla c = \left[-D_{GB}\frac{\partial c}{\partial x}, -D_{GB}\frac{\partial c}{\partial y}\right].$$
(4.34)

Z trzech stron (lewa, prawa i dolna) układ będzie izolowany (składowa normalna strumienia będzie wynosiła zero), co zaimplementujemy za pomocą warunku brzegowego Neumanna:

$$-\mathbf{n} \cdot \mathbf{J} = \mathbf{0}. \tag{4.35}$$

Źródłem dyfuzji jest niezerowe stężenie na górnym brzegu zadane warunkiem brzegowym Dirichleta:

$$c = 1.$$
 (4.36)

Zakładamy, że w chwili początkowej stężenie w układzie wynosi zero:

$$c(x,y,0) = 0$$
 (4.37)

Zadanie. Wykonaj symulację procesu dyfuzji w polikrysztale dla czasu końcowego wynoszącego 20 s. W symulacji przyjmij poniższe parametry:

$$D = 0.01; D_{GB} = 10; a = 1; d = 0.1; H = 10$$

Rozwiązanie:

- 1. Uruchom program COMSOL Multiphysics i wybierz Model Wizard.
- 2. W sekcji Select Space Dimensions wybierz geometrię 2D.

3. W *Select Physics* wybierz interfejs *General Form PDE* i kliknij *Add.* Wprowadź do pola tekstowego *Dependent variables* symbol **c**.

u 1)
u 1)
-
-

- 4. Kliknij przycisk *Study*, a następnie w oknie *Select study* wybierz *Time Dependent* i zatwierdź klikając *Done*.
- 5. Wprowadź parametry. Kliknij prawym przyciskiem na *Global Definitions* i z listy wybierz *Parameters*. Wprowadź do tabeli dane zgodnie z poniższą grafiką.

Model Builder	Settings				+ #	Graphics Convergence Plot 1	× 1
← → ↑ ↓ ∓ • Ⅲ Ⅲ •	Parameters					Q, Q, A, ⊕ ⊞ ↓ • Ø ● ● ⊖ ⇔ ⋈ ≝ ≌ ⋈ ₩ ∞ ■ ⊡ ≡ ⊃ @ ⊟	
Oyfuzja po granicach ziaren.mph (root) Goldal Definitions	▼ Parameters					1 m 1	٠
Component 1 (comp 1) P ■ Definitions K Geometry 1	^{III} Name a d H	Expression 1 0.1 10	Value 1 0.1 10	Description	_	0.5	
a ∆u General Form PDE (g) a ⊇u General Form PDE 1 b ⊇u General Form PDE 1 b ⊇u Zero Fixa: 1 b ⊇i Initial Values 1	D Dgb	0.01	0.01			0.6	
∰" Equation View ▲ Mesh 1 4 ~ % Study 1 ▲ Step 1: Time Dependent						0.2	
r 🖷 Kesults						o	
						0.2	Ī
	T + == Name: Dgb	i) № 14 1 10 •				0.4	
	Expression: 10					-0.6	
	Description:					-0.8	
						·1 ·1.4 ·1.2 ·1 ·0.8 ·0.6 ·0.4 ·0.2 0 0.2 0.4 0.6 0.8 1 1.2	m 1.4

6. Wykonaj geometrię. Zacznij od obiektu reprezentującego ziarno. Prawym przyciskiem myszy kliknij węzeł *Geometry 1* i z listy wybierz *Rectangle*. W polach *Width* i *Height* wprowadź odpowiednio **a** i **H**. Zatwierdź geometrię klikając *Build Selected*.

Model Builder	Settings -	Graphics Convergence Plot 1	
	Rectangle Build Selected Build All Objects Labet: Rectangle 1		•
A @ Component 1 (comp 1) Definitions A Geometry 1 Rectangle 1 (r)]	Object Type Type: Solid	9	
	Vidth: a Height: H	8 7	
● Initial Values 1 ■ Initial Values 1 ﷺ Equation View ▲ Mech 1 ■ ∞ Study 1	▼ Position Base: Corner ▼ x: 0	6	
Results	y: 0 n ▼ Rotation Angle Rotation 0 de	5	
	Layers Selections of Resulting Entities	5	
	Contribute to: None New New New Contribute to: None New New New New New New New N	2	
			m

 Dodaj obiekt reprezentujący granicę międzyziarnową. Prawym przyciskiem myszy kliknij węzeł Geometry 1 i z listy wybierz Rectangle. W polach Width i Height wprowadź odpowiednio d i H. W sekcji Position dodaj przesunięcie w kierunku x wynoszące a. Zatwierdź geometrię klikając Build Selected.

Model Builder	- • Settings	Graphics Convergence Plot 1
← → ↑ ↓ ∓ • 10 10 10 •	Rectangle	
Software and the second s	Build Selected 💌 🏢 Build All Objects	[m]
Pi Parameters	Label: Rectangle 2	10
Materials Gomponent 1 (comp1)	▼ Object Type	
Definitions	Type: Solid •	9
Rectangle 1 (r1)	 Size and Shape 	
Form Union (fin)	Width: d	
Materials ▲ Δu General Form PDE (q)	Height: H	
General Form PDE 1 Em Zero Flux 1	▼ Position	
Initial Values 1 M Equation View	Base: Corner •	6
Mesh 1	x a	a i i i i i i i i i i i i i i i i i i i
Study 1 Marcon Study 1 Marcon Study 1 Marcon Study 1	y: 0 n	n s#
Results	* Rotation Angle	
	Rotation: 0 de	, 4 ⁻
	D Layers	
	▼ Selections of Resulting Entities	
	Contribute to: None • New	
	Resulting objects selection	
	Show in physics: Domain selection	1
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8. Geometria w zadaniu składa się z 4 ziaren i 3 granic międzyziarnowych. Aby ją wykonać skorzystamy z szyków (ang. arrays). Prawym przyciskiem myszy kliknij węzeł Geometry 1 i z listy wybierz Transforms>Array. Jako Input Object wybierz prostokąt reprezentujący ziarno. W sekcji Size w polach x size oraz y size wprowadź odpowiednio 4*a oraz H. W sekcji Displacement w kierunku x wprowadźmy a+d. Zatwierdźmy klikając Build Selected.

Model Builder	Settings ••	Graphics Convergence Plot 1 ~ 8
← → ↑ ↓ ∓ • Ⅲ Ⅲ •	Array	
	Build Selected Build All Objects Label: Array 1	
 Materials Component 1 (comp1) 	▼ Input	
Editation Control Contro Control Control Control Control Control	Produ Openits Image: An and a second seco	е в 7
	 Size Arry type Retangular ▼ size 4°a ysize H 	
	Deputement m m m m solutions of Resulting Entities Contribute to: Resulting objects selection	
	Show in physics: Demain selection -	

 Analogicznie powiel granice międzyziarnowe. Prawym przyciskiem myszy kliknij węzeł Geometry 1 i z listy wybierz Transforms>Array. Jako Input Object wybierz prostokąt reprezentujący granicę międzyziarnową. W sekcji Size w polach x size oraz y size wpisz odpowiednio 3*a oraz H. W sekcji Displacement w polu x wprowadź a+d. Zatwierdź klikając Build Selected.

Model Builder	Settings	Graphics Convergence Plot 1
← → ↑ ↓ ∓ • Ⅲ Ⅲ ■ •	Array	
	Eulid Selected Build All Objects Label: Array 2	
4 Q Component 1 (comp 1)	✓ Input	
Definitions Armonia (1/1) Rectangle (1/2) Rectang	Input objects	e T
General Form PDE 1 General Form 1	▼ Size	6
C Zeto Fish C Seto Fish	Array type:	5
	x: a+d m y: 0 m	3
	 Selections of Resulting Entities 	
	Contribute to None New New New Device Statements Statem	
		-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Zdefiniuj równania. Wybierz węzeł *General Form PDE 1* i w polu tekstowym *Conservative Flux* wprowadź wyrażenia: -D*cx oraz -D*cy. W polu *Source Term* wprowadź 0. Inne parametry pozostaw bez zmian.

Model Builder	Settings	• #	Graphics Convergence Plot 1	-
$\leftarrow \rightarrow \uparrow \downarrow \mp \bullet \boxplus \boxplus \boxplus \bullet = \bullet$	General Form PDE			
	Label: General Form PDE 1	=		Ę,
Pi Parameters	▼ Domain Selection		10	Ш
Component 1 (comp 1)	Selection: All domains			Ц
A 🖂 Geometry 1	📧 1 📃 🔊	+	9	Ш
Rectangle 1 (r1)	2	-		L
Array 1 (arr1)	Active 3 a		8	Ш
Form Union (fin)	5			L
Materials	6 🗸			Ш
General Form PDE 1	Override and Contribution			Н
Zero Flux 1 Emitial Values 1	Equation			Ш
₩ ^r Equation View	▼ Conservative Flux			H
	Γ -0°cx x 1 ····································	/m		
- Cours	Source Term		4	Ш
	r 0 1/	/m²	3-	H
	 Damping or Mass Coefficient 			Ш
	d _a 1 s/	/m²	2	h
	 Mass Coefficient 			Ш
	e _a 0 s ² /	/m²	1	
			07	H
			1 -6 -5 -4 -3 -2 -1 ▲ 0 1 2 3 4 5 6 7 8 9 1	ك ٥

11. Zdefiniuj transport po granicach ziaren. Prawym przyciskiem kliknij General Form PDE 1 i z listy wybierz Duplicate. W nowym węźle, General Form PDE 2, zmień wyrażenia na strumień wpisując w polach Conservative Flux -D*cx oraz -D*cy. W oknie Graphics odznacz prostokąty reprezentujące ziarna (klikając na nie).

Model Builder	Settings **	Gr	iraphics Convergence Plot 1	
←→↑↓∓×ⅢⅢⅠ×	General Form PDE	Q	L Q (Q ↔ ⊞ ↓ • ∅ ⊜ ■ ⊖ ⊖ ⋈ ≝ ≝ ⋈ ⋈ ∞ ∎ ⊡ ⊡ ⊃ ∞ ⊟	
	Label: General Form PDE 2		m	1
Pi Parameters	▼ Domain Selection		10	
Component 1 (comp 1) E Definitions	Selection: Manual •		o-	
Geometry 1 Restangle 1 (c1)	2			
Rectangle 2 (r2)	Active 6		8	H
Array ((orr))	•			
Materials			7	F
Constant Form PDE (g) General Form PDE 1	Override and Contribution			
Cero Flux 1 Diritial Values 1	Equation			
General Form PDE 2	Conservative Flux		5	H
Mesh 1 A the study 1	Γ -Dgb*cx x 1/m			
Step 1: Time Dependent	▼ Source Term		4	F
	f 0 1/m ²		27	
	d _a 1 s/m²		2	H
	▼ Mass Coefficient			
	0_s 0S^2/m^2		1	F
				L
			* <mark> </mark>	1

12. Zdefiniuj warunki brzegowe. Prawym przyciskiem kliknij General Form PDE i z listy wybierz Dirichlet Boundary Condition. W oknie Graphics wybierz górne krawędzie prostokątów. W polu tekstowym Prescribed value of c wprowadź 1. Pozostałe warunki brzegowe (Zero Flux 1) oraz warunki początkowe (Initial Values 1) są zgodne z zadaniem i nie wymagają modyfikacji.

13. Utwórz siatkę numeryczną. W tym celu kliknij węzeł *Mesh 1.* Następnie, w sekcji *Mesh Settings* wybierz *Finer* jako *Element size* i wygeneruj siatkę klikając *Build All.*

14. Zdefiniuj czas symulacji oraz czasy w których zostaną zapisane wyniki. W polu tekstowym *Times* wprowadź wyrażenie **range(0,1,20)** i w sekcji *Results While Solving* zaznacz opcję *Plot*. Uruchom symulację klikając *Compute*.

15. W trakcie wykonywania obliczeń, na bieżąco będzie generowany wykres rozkładu stężenia. Po wykonaniu obliczeń, w sekcji *Data* mamy możliwość wybrania dla jakiego czasu chcemy wyświetlać rozkład stężenia.

Model Builder · · · · · · · · · · · · · · · · · · ·	Settings **	Graphics Convergence Plot 1 ~ ■
Oyfuzja po granicach ziaren.mph (root) Solobal Definitions Pi Parameters Solobal Materiale	Image: Book ← → Label: 2D Plot Group 1	Time-20 s Surface: Dependent variable c (1)
Component (comp1) E Definitions A Geometry 1	Data Data set: Study 1/Solution 1 (sol1)	9
Rectangle 1 (r1) Rectangle 2 (r2) Array 1 (arr1) Array 2 (arr2)	Time (s): 20	e 0.8
Form Union (fin)	▼ Plot Settings View: Automatic ▼	707
Content from Put f Ear Flux 1 Ear Flux 1	x-xis labet y-xis labet Show hidden entities	6
Dirichlet Boundary Condition 1 Met 1 Meth 1	Propagate hiding to lower dimensions Plot data set edges	5
Step 1: Time Dependent Try-Solver Configurations	Color Black • Frame Material (X, Y, Z) •	4
2): Data ved Values #10 Data ved Values #11 Tables 2 D Plot Group 1	✓ Color Legend ✓ Show legends	2
행을 Export B및 Reports	Show maximum and minimum values Show units Position: Right	1-
	Text color: Black Number Format	
	Window Settings	-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 m

Bibliografia

- 1. I. Kaur, W. Gust, Y. Mishia, Fundamentals of grain and interphase boundary diffusion, Wyd. III rozszerzone, John Wiley & Sons, Chichester 1995.
- 2. A. Paul, S. Divinski, Handbook of Solid State Diffusion Diffusion Fundamentals and Techniques, Elsevier Science, Saint Louis 2017.
- 3. H. Mehrer, Diffusion in solids : fundamentals, methods, materials, diffusion-controlled processes, Springer, Berlin 2007.

5. Przykłady zastosowań

W rozdziale 4 przedstawiono szereg problemów do samodzielnej nauki wraz ze szczegółowymi wskazówkami jak rozwiązać je w środowisku COMSOL Multuphysics[®]. W tym rozdziale zostanie omówionych dziewięć bardziej złożonych przykładów wraz ze wskazówkami do ich rozwiązania. Tak jak poprzednio, możesz sprawdzić przygotowane przez Ciebie na podstawie wskazówek projekty z gotowymi, które znajdują się na stronie <u>https://mim.agh.edu.pl/</u>.

5.1. Transport i adsorpcja – reaktor przepływowy

Wprowadzenie. Obiektem symulacji będzie reaktor przepływowy w formie długiego prostopadłościanu, na ściance którego znajduje się powierzchnia adsorpcji. Do komory reaktora jest wprowadzany ze stałą szybkością obojętny płyn (gaz lub ciecz) pełniący rolę nośnika, w którym znajduje się substancja mogąca się adsorbować na powierzchniach ścianek. Możliwa jest także desorpcja z powierzchni do wnętrza reaktora. Zakładamy ustalony laminarny przepływ wzdłuż osi reaktora. Z równań hydromechaniki wynika, że taki stacjonarny osiowy przepływ będzie miał *paraboliczny profil prędkości* pod warunkiem, że kształt komory jest cylindryczny. W przypadku prostopadłościanu nie jest to więc przepływ dokładnie paraboliczny, ale takie przybliżenie przyjmiemy. Zakładamy ponadto, że cząsteczki zaadsorbowane na powierzchni mogą się po niej poruszać na skutek dyfuzji powierzchniowej. W analizowanym przykładzie bilans składnika w objętości reaktora *musi być sprzężony* z bilansem składnika na powierzchni katalitycznej. Dla przejrzystości wizualizacji na Rys. 5-1 pokazany jest przekrój osiowy reaktora.

Rys. 5-1 Transport składnika w 2D i adsorpcja na fragmencie ścianki wyznaczonym przez $y=b_1$ i $y=b_2$.

Przykład demonstruje także, w jaki sposób można w COMSOLu wykonać obliczenia, gdy występują sprzężone procesy przebiegających w dwóch różnych wymiarach.

Szczegółowy opis modelu. Obszarem symulacji będzie prostokąt $[0, a] \times [0, b]$ (szerokość *a*, wysokość *b*) będący przekrojem reaktora cylindrycznego płaszczyzną osiową. Reakcji powierzchniowa na brzegu będzie ograniczona do odcinka [0.3b, 0.7b] na prawym boku prostokąta. Jeżeli przez *X* oznaczymy składnik transportowany w reaktore, a przez X_{ad} składnik zaadsorbowany, to reakcję adsorpcji/desorpcji opisuje równanie

$$X \rightleftharpoons_{k_b}^{k_f} X_{ad}, \qquad (5.1)$$

gdzie *k_f*, *k_b* są heterogenicznymi stałymi szybkości reakcji. W modelu mamy dwa stężenia: objętościowe i powierzchniowe:

c = c(x, y, t) – stężenie składnika X (mol/m³) w reaktorze,

$$c_s = c_s(y,t) - \text{stężenie powierzchniowe zaadsorbowanych cząstek Xad (mol/m2)$$

Na powierzchni reakcji znajduje się zwykle pewna liczba *centrów aktywnych*, do których mogą przyłączać się adsorbowane cząstki. Niech Γ_0 oznacza całkowite stężenie powierzchniowe centrów aktywnych (mol/m²). Jeżeli \mathcal{P} oznacza ułamek centrów aktywnych, które są zajęte w danym momencie przez zaadsorbowany składnik X_{ad} , czyli $\mathcal{P} = c_s/\Gamma_0$, to ułamek wolnych centrów wynosi $1-\mathcal{P}$. Przyjmiemy, że szybkość desorpcji jest pierwszego rzędu, $r_{des} = k_b \mathcal{P}$, a szybkość adsorpcji drugiego, $r_{ads} = k_f p_x (1-\mathcal{P})$, gdzie p_x jest ciśnieniem składnika X unoszonego w reaktorze. Wykorzystując równanie gazu doskonałego $p_x = cRT$, gdzie R – stała gazowa, T – temperatura (K), mamy

$$r_{ads} = k_f p_X \cdot (1 - \vartheta) = k_f c R T \cdot (1 - c_s / \Gamma_0) = (k_f R T / \Gamma_0) c \cdot (\Gamma_0 - c_s),$$

$$r_{des} = k_b \vartheta = (k_b / \Gamma_0) c_s.$$
(5.2)

Oznaczając $k_{ads} = k_f RT / \Gamma_0$, $k_{des} = k_b / \Gamma_0$ (*stałe szybkości adsorpcji* i *desorpcji*) otrzymujemy następujące wyrażenia na szybkość reakcji adsorpcji/desorpcji

$$r_{ads} = k_{ads} c \left(\Gamma_0 - c_s \right), \quad r_{des} = k_{des} c_s.$$
(5.3)

Ponieważ przez reaktor przepływa nośnik z prędkością *v*, w którym unoszony jest składni *X*, to pełne wyrażenie na strumień wewnątrz reaktora ma postać

$$\mathbf{J} = \underbrace{-D\nabla c}_{\text{dyfuzja}} + \underbrace{c \boldsymbol{\upsilon}}_{\text{konwekcja}}$$
(5.4)

Stężenie c składnika X spełnia równanie (prawo zachowania – por. (1.26)):

$$\frac{\partial c}{\partial t} + \operatorname{div} \mathbf{J} = \mathbf{R}_{obj}.$$
(5.5)

Zakładamy brak homogenicznych reakcji (w objętości reaktora), dlatego $R_{obj} = 0$. Dla przepływu stacjonarnego i laminarnego wzdłuż osi prostokąta profil prędkości jest paraboliczny i osiąga największą wartość na osi przepływu (Rys. 5-2), zatem:

$$\boldsymbol{\upsilon} = [\upsilon_x, \upsilon_y] = [0, 4\upsilon_{\max} x(a-x)/a^2], \qquad (5.6)$$

czyli $\upsilon_x = 0$, $\upsilon_y = 4\upsilon_{\max}x(a-x)/a^2$.

Rys. 5-2 Paraboliczny profil prędkości w reaktorze. Prędkość na ściankach bocznych (x= 0 i x= a) wynosi 0.

Bilans składnika adsorbowanego/desorbowanego na powierzchni (1D) musi być uwzględniony w członie reakcyjnym (w COMSOLu jest to *Source term*), $R_s = r_{ads} - r_{des}$:

$$\frac{\partial c_s}{\partial t} + \frac{\partial J_s}{\partial x} = R_s, \qquad (5.7)$$

gdzie $J_s = -D_s \frac{\partial c_s}{\partial x}$ jest strumieniem dyfuzji powierzchniowej.

Warunki brzegowe. Występują tu trzy przypadki. Pierwszy – ta część brzegu gdzie nie zachodzi adsorpcja oraz składnik nie wchodzi/wychodzi z reaktora:

$$\boldsymbol{n} \cdot \mathbf{J} = \mathbf{0}. \tag{5.8}$$

Drugi – fragment brzegu gdzie zachodzi reakcja adsorpcji/desorpcji (Rys. 5-3):

Rys. 5-3 Powiększony fragment układu w pobliżu powierzchni reakcji. Strumień cząstek opisany strumieniem J (żółte strzałki). Gdy są adsorbowane, to szybkość adsorpcji/desorpcji jest równa $n \cdot J$ na brzegu (niebieski odcinek). Jednocześnie ta wielkość jest widziana na odcinku jako człon reakcyjny Rs. Stąd $n \cdot J = Rs$.

Trzeci – na wejściu do reaktora jest stałe stężenie, a na wyjściu strumień jest równy tylko strumieniowi konwekcyjnemu:

wejście:
$$c = c_0$$
,
wyjście: $n \cdot \mathbf{J} = n \cdot (cv)$. (5.10)

Warunki początkowe: W chwili początkowej (t = 0) stężenie w reaktorze jest stałe i wynosi zero. Podobnie, na powierzchni reakcyjnej w chwili t = 0 nic nie jest zaadsorbowane

$$c|_{t=0}=0, c_{s}|_{t=0}=0.$$
 (5.11)

Zadanie 1. Wykonać symulacje procesu transportu składnika w reaktorze przepływowym z reakcją powierzchniową adsorpcji/desorpcji o kinetyce (5.3). Reaktor ma kształt walca o wysokości *H* i promieniu *r*. Powierzchnia katalityczna jest fragmentem powierzchni bocznej walca pomiędzy z=0.4*H* a z=0.6*H*. Dane do symulacji podane są poniżej.

Tab. 5-1 Dane do symulacji w reaktorze przepływowym z adsorpcją.

Parametr	Wartość i jednostka
c0	1000 mol/m ³
k_ads	1.22·10 ⁻⁶ m³/(mol⋅s)
k_des	1.54·10 ⁻⁹ 1/s
Gamma_s	950 mol/m ²
Ds	1.31·10 ⁻¹¹ m ² /s
D	1.45·10 ⁻⁹ m²/s
v_max	1.2 mm/s
r	0.1 mm
Н	1.2 mm

Rozwiązanie:

- 1. Uruchom program COMSOL Multiphysics i wybierz *Model Wizard*. Jako *Space Dimension* wybierz 3D.
- W oknie Select Physics dodaj do projektu Laminar Flow (spf) oraz General Form PDE (g). W polu Dependent variables dla General Form PDE (g) wpisz zmiennej c oraz wybierz odpowiednie jednostki: Concentration (mol/m^3) oraz Reaction Rate (mol/(m^3*s).

Recently Used Au General Form PDE (g) Au General Form PDE (g) Au General Form RDE (g) Au Coefficient Form RDE (g) Au Format Form RDE (g) Au Format	earch General Form PDE (g) Dependent Variables Field name: Number of dependent variables: Dependent variables: C
 I) Heat Transfer I) Heat Transfer I) Whethermatics Aur DED Interfaces Aur Coefficient Form PDE (c) Aur Over Dimetraces Aur Over Dimetraces Aur DED Interfaces Aur DE (walk) Aur Dimetar (walk) Aur Distance (wd) Curvilinear Coordinates (cc) 	Units Dependent variable quantity Concentration (mol/m^3) Source term quantity Reaction rate (mol/(m^3*s))
Added physics interfaces: ≷ Laminar Flow (spf) Δυ General Form PDE (g)	Add

 Aby uwzględnić procesy na powierzchni katalizatora wybierz General Form Boundary (gb) z Lower Dimensions jak na rysunku poniżej. Zmień nazwę zmiennej na cs oraz wprowadź jednostki mol/m^2 dla cs oraz mol/(m^2*s) dla Source term quantity (alternatywnie możesz wybrać z listy Molar Flux).

Select Physics	Review Physics Interface
Search	General Form Boundary PDE (gb)
A Precently Used Au General Form PDE (g)	Dependent Variables
∆u General Form Boundary PDE (gb) ∆u Coefficient Form PDE (c) ↓ Laminar Flow (pf) ↓) AcDC ↓) AcDuctics ↓) AcDuctics ↓ AcDC ↓) AcDuctics ↓ AcDC ↓) AcDuctics ↓ Single-Phase How ↓ Fluid How ↓ Single-Phase How ↓ Heat Hanster	Field name: cs Number of dependent variables: 1 Dependent variables: cs +
▲ ∆u Mathematics ▲ ∆u PDE Interfaces	Units
Δυ Coefficient Form PDE (c)	Dependent variable quantity
∆u General Form PDE (g)	None
City Wave Form PDE (wahw)	None
PDF Boundary Elements (ndebe)	Unit:
A Au Lower Dimensions	mol/m^2
∆u Coefficient Form Boundary PDE (cb)	- Source term quantity
∆u Coefficient Form Edge PDE (ce)	Molar flux (mol/(m^2*s))
<u>Au Coefficient Erom Doint DDE (cp)</u> <u>Δu General Form Boundary PDE (gb)</u> <u>Δu General Form Edge PDE (gp)</u> <u>Δu General Form Point PDE (gp)</u> <u>fdu Weak Form Boundary PDE (wb)</u> <u>fdu Weak Form Doint PDE (wp)</u> <u>fdu Weak Form Point PDE (wp)</u> <u>fdu Weak Form Point PDE (wp)</u>	
Added physics interfaces:	1
≷ Laminar Flow (spf) ∆u General Form PDE (g) ∆u General Form Boundary PDE (gb)	

- 4. W sekcji *Select Study* wybierz *Time Dependant* i zatwierdź klikając *Done*.
- 5. W Global Definitions wybierz Parameters i wprowadź poniższe parametry.

6. Dodaj pierwszy walec (Cylinder) reprezentujący komorę reaktora o promieniu r i wysokości H.

7. Dodaj drugi walec reprezentujący powierzchnię katalityczną. Wprowadzamy promień **r**, wysokość **0.2*H** oraz pozycję na osi z wynoszącą **0.4*H**. Zmień *Object Type* na *Surface*.

Model Builder · · · · · · · · · · · · · · · · · · ·	Settings Cylinder	- Graphics Q Q Q + 田田 - 田田 西日 - 田 岡 - 西田 岡 - 西西 田 田 - 日 岡 - 西田 - 日 - 三田 田 - 三田 田 - 三田 田 - 三田 - 三田 - 三	
	Build Stetctd * Build All Objects Labet: Cylinder 2 Object Type	5 0 5 5	
Colonary System 1 (syst) Boundary System 1 (syst) Cylinder 1 (syst) Cylinder 1 (syst) Form Union (fin)	Type Surface	1	
Staterists Laminar Row (sp) Bruic Properties 1 Bruic Properties 1 Wall Au Coefficient Form PDE (c) De Coefficient Form PDE 1	* Postion x: 0 y: 0 x: 0.44 m		
	• Axis Axis type: [2-axis • Rotation Angle	x10°m 0.5	
ar ∿‰ Study 1 I Mastep 1: Time Dependent I ∰ Results	Rotation: 0 deg • Coordinate System Work plane: _ sy-plane -)		
	Layers Selections of Resulting Entities Contribute to: None None None	y _ x	

 Aby ułatwić definiowanie warunków brzegowych utwórz Selection, który będzie fragmentem brzegu reprezentującym powierzchnię katalityczną. Wybierz Definitions>Selections>Explicit. Zmień nazwę na pow. katalityczna oraz w Geometric Entity Level wybierz Boundary. W oknie graficznym wybierz powierzchnię boczną mniejszego walca.

9. Dodaj zmienną (*Variables*) dla członu reakcyjnego **Rs** w postaci wyrażenia **k_ads*c*(Gamma_s-cs)-k_des*cs**.

10. Z biblioteki materiałów dodaj predefiniowany materiał Water, liquid.

Model Builder • * ← → ↑ ↓ ∓ • Ⅲ Ⅲ •	Settings Material						* 1	Graphics ④ ④ ④ ◆ 田 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	- 1
	Label: Water, liquid						Ð	5 ^{×10⁵ m}	٠
4. Manufai 4. Experiment 4. Experim 4. Experiment 4. Experiment	Geemetric Enthy Selection Geemetric Enthy Selection All domains Allow						• • •		
Tip Materials Valet, liquid (matt) Genman How (pp) Top Initial Values 1 Ser Wall 1	 Override Material Properties Material Contents 							×10 ⁹ m	
A. Cardination Fram PEC () III Cardination Fram PEC () III Cardination Fram PEC () IIII Cardination Fram PEC () IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Property Property Property Provide Density Ratio of specific heats Betricial conductivity Heat capacity at constant pres Thermal conductivity Speed of sound	Name mu rho gamma sigma Cp k c	Value eta[1]1/ rho[1]1/ 1.0 5.5e-6[S Cp(T]1/ cs(T]1/K]	Unit Pas kg/m ³ 1 S/m J/(kg-K) W/(m m/s	Property group Basic Basic Basic Basic Basic Basic Basic			×	
Appearance					×10 ⁵ m				

11. W Laminar Flow (spf) warości gęstości i lepkości zostaną odczytane z dodanego materiału Water, liquid. Dodaj warunki brzegowe – Inlet oraz Outlet aby poprawnie zdefiniować przepływ wody. Inlet zadaj na dolnej podstawie walca i w polach tekstowych Velocity field wprowadź składowe x=0, y=0, z= (v_max/r^2)*(r^2 - (x^2+y^2)). Na górnej podstawie walca zdefiniuj Outlet i wprowadź wartość ciśnienia 1[atm].

Model Builder · · · · · · · · · · · · · · · · · · ·	Settings v a	Graphics 역 역 슈 슈 판 : 나 나 너 너 너 너 바 등 등 등 등 등 정 : 2월 월 문 정 : 20 등 한 10 년 70 : 3월 등 68 등 68 등 69 등 69 등 69 등 69 등 69 등 69	×
 Throughout inderbigamph force) Global Definitions Global Definitions Generations Compared Target 1 Compared Target 2 Compared 1 Compared 1 Compared 1 Compared 2 	Laba Iniet 1 P	5 0-5 -5 1	
Control Vietor (Pro)		x10 ⁴ m	
Also General Form Ecoundry PDE (gh) General Form Ecoundry PDE (gh) We find Walves 1 Auch 1	Weedsy fields U 0 x U 0 y U 0 y U 0 y U 0 y U 0 y U 0 y U 0 y U 0 y U 0 y U 0 y U 0 y U 0 y U 0 y U 0 y U 0 y U 0 y	ν, ¹ / ₁ , x x x x x x x x x x	

Kliknij General Form PDE i wprowadź składowe strumienia w polach tekstowych Conservative flux: -D*cx+c*u, -D*cy+c*v, -D*cz+c*w dla składowych x, y oraz z. W polu Source Term wprowadź 0. Na dolnej podstawie walca zadaj warunek brzegowy Dirichleta na stężenie równe c0.

Model Builder · · · · · · · · · · · · · · · · · · ·	Settings - General Form PDE	• Graphics - 4 4 条 4 記 小・世話 臣 雪 田 田 秋 巻 峰 限 湖 幸 臣 王 つ 名 西 音 白 田
	Label: General Form PDE 1	v10 ⁵ m
Pi Parameters	· Domain Colortion	5 0
Haterials	+ Domain Selection	· · · · · · · · · · · · · · · · · · ·
Component 1 (comp1) A Definitions	Selection: All domains	
a= Variables 1	(m) 1	
💁 pow. katalityczna	E -	
Boundary System 1 (sys 1)	Active	
A Geometry 1		
Cylinder 1 (cyl1)		
Cylinder 2 (cyl2)		
Form Union (fin)	Override and Contribution	
Water, liquid (mot 1)	Equation	
4 Naminar Flow (spf)		
Fluid Properties 1	Conservative Flux	
Wall 1	-D*cx+c*u x	×10 ⁻³ m
inlet 1	Γ -D*cy+c*v y mol/(m ²	
Dutlet 1	-D*cz+c*w z	0.5
Canaral Form PDE (g)	* Source Term	
Zero Flux 1		
Initial Values 1	f 0 mol/(m ³	
Dirichlet Boundary Condition 1	 Damping or Mass Coefficient 	
General Form PDE 1		
initial Values 1	0 ₃ 1	
Mesh 1	▼ Mass Coefficient	
A Step 1: Time Dependent	e 0	z
Results	v a v	Ystax
		505
		×10'5 m

13. Zdefiniuj warunek brzegowy typu *Flux/Source* na górnej podstawie walca. W polu tekstowym *Boundary Absorption/Impedance Term* wprowadź wyrażenie: **nx*u+ny*v+nz*w**.

Model Builder	Settings •••	
Transport i adsorbcja.mph (root) Global Definitions	Label: Flux/Source 1	
P Parameters State in the second	Boundary Selection	° • •
▲ ■ Definitions ■ Variable 1 Some pow. katality cma Definition 2 (part) ↓ Officer 1 (part) ↓ Officer 1 (part) ↓ Officer 1 (part) ↓ Officer 1 (part) ↓ Officer 2 (part) ↓ Officer 2 (part)	Additional Community of the second se	1
■ Form Union (tm) ▲ (\$* Materials ▶ \$\$ Wote; liquid (matt) ▲ (\$* Laminar Flow; (spf)	Override and Contribution Equation Boundary Flux/Source	
Wall 1 Wall 1 Control Values 1 Control Values 1 Control	g 0 mol/(m ¹ s)	×10 ³ m
Auto General From POE (g) We concern the model of the model o	8 (m ² u+m ² /+m ² /m ²) m ² s	z i z
🖻 🝓 Results		-5 0 5 ×10 ⁵ m

14. Zdefiniuj warunek brzegowy na powierzchni katalitycznej. Dodaj *Flux/Source*, w oknie *Boundary selection* wybierz **pow. katalityczna**, a w polu tekstowym *Boundary Flux/Source* wprowadź **-Rs**.

15. Zdefiniuj interfejs opisujący proces transportu i reakcję na powierzchni katalitycznej. Kliknij *General Form Boundary PDE,* w oknie *Boundary Selection* zmień domenę w której rozpatrywany jest proces z *All boundaries* na zdefiniowaną wcześniej selekcję **pow.** *katalityczna*.

Model Builder ← → ↑ ↓ ∓ • Ⅲ Ⅲ •	Settings General Form Boundary PDE	Graphics 9、9、9、9 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日
Transport i adsorbcja.mph (root) Global Definitions Pi Parameters	Label: General Form Boundary PDE	5 x10 ⁵ m
Component 1 (comp 1) Component 1 (comp 1) Environs Definitions	Boundary Selection	
Variadas	Active 13	1
Controlling (and) Controlling (and	Units Operators variable quantity None Unit:	x10 ⁴ m
Iniet 1 Outlet 1 Outlet 1 Au General Form PDE (g) Borneral Form PDE 1 Ear Flux: 1	imol/m^2 Source term quantity Molar flux (mol/(m^2*sj))	0.5
Initial Values 1 Distribution of the construction of the	Dependent Variables	y , s o 5 s 10 ⁵ m

 Zdefiniuj równania. Wprowadź odpowiednie wyrażenia na strumień dyfuzji powierzchniowej w polach tekstowych *Conservative flux*: -Ds*csTx, -Ds*csTy, -Ds*csTz dla składowych x, y oraz z. W polu *Source Term* wprowadzamy Rs.

Model Builder · · · · · · · · · · · · · · · · · · ·	Settings ••• General Form PDE	Graphics 역 역 역 북 김 · 산 • 년 년 년 월 등 등 등 등 등 형 (생 왕 종 정) 속 두 값 만 2 종 등 형 (영 용)	4
	Label: General Form PDE 1	5 ×10 ⁴ m	ä
	Selection: All boundaries	, ,	
form (uner, inv) form	Override and Contribution >> Equation Conternative Rux Ortority x /r Obtrolity y /r/ortolity x mol(min)	×10 ⁹ m	
A Jua General Term POE (p) Beneral Term POE (p) Second Term POE (p) Second Term 1 Beneral Term Term Term Term Term Term Term Term	Source Term / Pa mot/on ² -a) Damping or Mass Coefficient d_ 1 // Mass Coefficient // Mass Coefficient		
	e, 0s	y ↓ x x x x x x x x x x x x x x x x x x	

17. Utwórz siatkę. Kliknij węzeł *Mesh 1, w Mesh settings* z listy *Sequence type* wybierz **Usercontrolled mesh**. Jako główną siatkę w objętości skorzystamy z domyślnej kalibracji dla *Fluid Dynamics*. Jako rozmiar wybierz **Extra coarse**. Dodaj *Free Tetrahedral* z opcją *Remaining* i dodatkowy *Size*. W nim z listy *Geometric entity level* wybierz *Boundary* oraz w oknie *Selection* wybierz *pow. katalityczna*. W polach *Minimum element size* i *Maximum element size* wprowadź odpowiednio: **1.0E-5/5** oraz **4.0E-5/5**.

Model Builder v = ← → ↑ ↓ ▼ • ☶ ☷ ☷ •	Settings v a Size	Graphics Q. Q. 会 会 田 小・世 近 臣 田 田 田 阪 岡 然 督 御 蔵 駿 本 田 国 む 名 西 岡 岡 岡 田 田 田 日 日 岡 日 日 岡 日 日 田 田 日 日 日 日
	Build Selected Build All Labet: Size 1	5 ^{x10} ⁴ m
Component 1 (comp 1) E Definitions Definitions Provember 1	Geometric Entity Selection Geometric entity level: Boundary	
boundary System 1 (sys1) boundary System 1 (sys1) boundary System 1 boundary System 1	Selection: pow. katalityczna •	
Cylinder 1 (cyl1) Cylinder 2 (cyl2)	Active 10 13	
 ▲ Ist Materials ▶ Ist Water, flouid (mot 1) ▲ Laminar flow (spf) Em Fluid Properties 1 	Element Size	
Initial Values 1 Wall 1 Initial Values 1 Content 1	Calibrate for: General physics	x10° m
Au General Form PDE (g)	Custom Element Size Darameters	
Initial Values 1 Dirichlet Boundary Condition 1 Flux/Source 1 Flux/Source 2	Maximum element size Maximum element size m	
Δυ General Form Boundary PDE (gb) See General Form PDE 1 See Initial Values 1	Minimum element size Minimum element arroth reter Minimum element arroth reter	
A Modelh 1 A Size A Size A Size 1 A Size 1	13 15 Curvature factor: 06	y , x , s , s , s , s , s , s , s , s , s
LA en		

18. Rozwiń węzeł *Study 1*, następnie kliknij *Step 1: Time Dependent* i w polu tekstowym *Time Dependant* sekcji *Study Settings* wybierz jednostkę czasu **min** oraz wprowadź w polu tekstowym *Output Times*: **0 0.001 0.01 0.1 0.5 1 range(2,2,50) range(60,10, 600)**.

Model Builder	Settings		× 1	Graphics Convergence Plot 1 Convergence Plot 2	~ +
	Time Dependent			4444	
Pi Parameters	= Compute C Update Solution				۵
A Definitions				s ×10 ⁻⁵ m	
a- Variables 1	 Study Settings 			1	
Boundary System 1 (sys 7)	Time unit: min	aa(60 10 6/	•		
A Geometry 1	Times: 0 0001 001 01 001 11 million (2,2,30) Ta	ige(oo, io, oo	min 🔤		
Cylinder 1 (cyl1)	Tolerance: Physics controlled		-		
Form Union (fin)	Results While Solving			1	
A 🚦 Materials	 Physics and Variables Selection 				
Water, liquid (mot1)					
Eluid Properties 1	Modify physics tree and variables for study st	±p			
Enitial Values 1	Physics interface	Solve for	Discretization		
🗁 Wall 1	Laminar Flow (spf)		Physics settings •		
inter 1	General Form PDF (o)	R	Physics settings		
A Au General Form PDE (a)	Country Book (1)		Dhuring antiinen	×10 ⁻³ m	
Ceneral Form PDE 1	General Form Boundary PDE (gb)		Physics settings •		
Zero Flux 1	Values of Dependent Variables			0.5	
Dirichlet Boundary Condition 1	Mesh Selection				
Flux/Source 1	Study Extensions				
 Δυ General Form Boundary PDE (gb) 					
Ceneral Form PDE 1					
initial Values 1					
A Mesh 1					
4 Free Tetrahedral 2				7	
△ Size 1				y t x	
4 ~% Study 1				× · · · · · · · · · · · · · · · · · · ·	
Kap 1: Time Dependent					
 In- Solver Contigurations 				x10 · m	

19. Uruchom obliczenia. Przygotuj wykresy prędkości oraz stężeń *c* i *cs*. Przeanalizuj zmiany jakie zachodzą w trakcie procesu.

Zadanie 2. Sporządź wykresy ilustrujące ewolucje (zależność od czasu) całkowitej ilości składnika w reaktorze $\int_{reaktor} cdV$ oraz składnika zaadsorbowanego $\int_{lityczna} c_s dA$. Podpowiedź: można to zrobić

poprzez zdefiniowanie całek objętościowej i powierzchniowej w węźle Derived Values.

Bibliografia

- 1. S. Fogler, Elements of Chemical Reaction Engineering, Wyd. 4, Prentice Hall 2005.
- 2. P.L. Houston, Chemical Kinetics and Reaction Dynamics, Dover Publications, 2006.

5.2. Kinetyka nawęglania stali

Wprowadzenie. Nawęglanie jest procesem przemysłowym, w którym dyfuzyjny transport masy odgrywa zasadniczą rolę. Na powierzchnię nisko-węglowej stali jest dostarczany węgiel, który po przejściu przez granicę dyfunduje w głąb stali w temperaturze ok. 870–980 °C. Czas nawęglania to zazwyczaj od kilku do kilkunastu godzin.

Rozpatrujemy nawęglanie z fazy gazowej. Szybkość nawęglania jest w tym modelu determinowana przez kombinację dwóch procesów:

- (i) przenikania węgla z atmosfery gazowej do ciała stałego przez granicę faz,
- (ii) dyfuzji węgla w stali.

Zakładamy geometrię jednowymiarową procesu oraz brak zmiany objętości molowej sieci krystalicznej stali podczas procesu nawęglania (założenie to jest poprawne dla dyfuzji międzywęzłowej). Rozkład stężenia w stali ($x \ge 0$) w dowolnej chwili $t \ge 0$ będzie opisany funkcją c(x, t). Granica stal/atmosfera odpowiada współrzędnej x = 0 (Rys. 5-4).

Rys. 5-4 Schematyczne przedstawienie transportu węgla w procesie nawęglania.

Przyjmiemy, że głównym procesem transportu węgla w stali jest dyfuzja międzywęzłowa, natomiast na zewnątrz stali atmosfera gazowa jest jednorodna o stężeniu $c_{\rm L}$. Oznacza to, że stężenie $c_{\rm L}$ węgla w fazie gazowej na "zewnętrznej" powierzchni stali (co uwzględnimy w warunku brzegowym) jest stałe. W roztworze stałym stopu Fe–C atomy węgla znajdują się w położeniach międzywęzłowych fazy α -Fe lub γ -Fe. Mogą się one przemieszczać jedynie z jednego położenia międzywęzłowego do drugiego. Jest to prosty mechanizm międzywęzłowy, zwany także mechanizmem węzłowym bezpośrednim (Rys. 5-5).

Rys. 5-5 Przeskoki atomów w bezpośrednim mechanizmie węzłowym – jeden z mechanizmów dyfuzji.

Nawęglanie będzie modelowane prawem Ficka dyfuzji w stali oraz odpowiednim warunkiem brzegowym opisującym transfer poprzez granicę faz. Stała materiałowa charakteryzująca dyfuzję to *współczynnik dyfuzji, D* (m²/s), który w ogólnym przypadku może zależeć od położenia i stężenia węgla. Przejście (przenikanie) węgla przez brzeg jest charakteryzowane przez *współczynnik szybkości transferu* masy, β (m/s). Strumień dyfuzyjny ma zatem postać

$$I = -D\frac{\partial c}{\partial x}, \qquad (5.12)$$

ale na brzegu (x = 0) strumień jest wyrażony warunkiem:

$$J|_{y=0} = \beta(c_{L} - c_{S}), \qquad (5.13)$$

co oznacza, że strumień przez brzeg jest proporcjonalny do skoku stężenia. W (5.13) symbol c_s oznacza stężenie węgla na brzegu, ale od strony stali, $c_s = c(0,t)$. Mamy więc następujący układ równań:

$$\begin{cases} J = -D \frac{\partial c}{\partial x}, & \frac{\partial c}{\partial t} + \frac{\partial J}{\partial x} = 0 \\ I_{prawo \ Ficka} & Bilans \ masy \ (prawo \ zacho-wania). Brak \ źródeł. \\ J|_{x=0} = \beta(c_L - c(0, t)), \quad t \ge 0. \end{cases}$$
(5.14)

Podsumowując, dwa główne parametry, które opisują szybkość nawęglania w tym modelu to:

- (i) współczynnik transferu masy przez granicę, β , (współczynnik sprawności przekazywania węgla z atmosfery gazowej do powierzchni nawęglanej),
- (ii) współczynnik dyfuzji węgla w stali, *D*(*x*, c).

Warunki początkowe i brzegowe. Przyjmujemy, że rozkład węgla w stali nie nawęglonej powierzchniowo jest jednorodny w całej objętości, zatem stężenie początkowe, C_{pocz} , jest stałe w całej próbce

$$c(x,0) = c_{pocz}, \quad x \ge 0.$$
 (5.15)

Formalnie, problem (5.14) jest określony na nieskończonym odcinku, $x \in [0, \infty]$. W obliczeniach musimy jednak ograniczyć się do pewnego skończonego obszaru o szerokości L > 0. Zatem $x \in [0, L]$. Grubość L wybieramy na tyle dużą, aby w przewidywanym czasie symulacji dyfuzja nie dotarła do drugiego końca $(L \gg \sqrt{Dt})$, na którym zakładamy zerowy strumień (układ zamknięty), $J|_{x=L}=0$, lub warunek, że stężenie jest równe stężeniu początkowemu, $c_n = c(L,t) = c_{pocz}$. W praktyce oba warunki prowadzą do podobnych wyników, jeżeli tylko dyfuzja nie dotrze do drugiego brzegu. Podsumowując będziemy szukać rozwiązania następującego problemu

$$\begin{cases} \frac{\partial c}{\partial t} + \frac{\partial J}{\partial x} = 0, \quad J = -D \frac{\partial c}{\partial x}, \quad x \in (0, L), t \ge 0, \\ J|_{x=0} = \beta(c_L - c(0, t)), \quad c(L, t) = c_p, \quad t \ge 0, \\ c(x, 0) = c_{pocz}, \quad x \in (0, L), \end{cases}$$
(5.16)

lub

$$\begin{cases} \frac{\partial c}{\partial t} + \frac{\partial J}{\partial x} = 0, \quad J = -D \frac{\partial c}{\partial x}, \quad x \in (0, L), t \ge 0, \\ J|_{x=0} = \beta(c_L - c(0, t)), \quad J|_{x=L} = 0, \quad t \ge 0, \\ c(x, 0) = c_{pocz}, \quad x \in (0, L), \end{cases}$$
(5.17)

Zadanie 1. Wykonać projekt 1D w COMSOLu, który będzie symulował opisany problem nawęglania. Przyjąć następujące dane:

β (m/s)	<i>D</i> (m²/s)	c _L (mol/m ³)	c _{pocz} (mol/m ³)	<i>L</i> (mm)
2.5·10 ⁻³	1.1.10-10	2	0.01	15

Przyjąć następujące czasy (s): 0 0.1 0.5 1 2 5 10 50 100 200 300 400 500 3600 7200 10800.

Zadanie 2. (Rozwinięcie Zadania 1) W praktyce podczas nawęglania stosuje się proces cykliczny , w którym np. stężenie powierzchniowe gazu nawęglającego zmienia się w czasie (najprostszy przypadek to dwuetapowe nawęglanie). Można także obniżyć temperaturę co prowadzi do obniżenia współczynnika dyfuzji *D*. Celem takiego procesu jest uzyskanie profilu nasycenia węglem, który jest bardziej wyrównany w pobliżu powierzchni (poprawia to twardość powierzchniową stali).

Zastosować różne warianty cyklicznego procesu nawęglania:

(a) Zmienne β , np.

$$\beta(t) = \begin{cases} \beta_1 & \text{dla } t \le t_{br}, \\ \beta_2 & \text{dla } t_{br} < t \le t_{koniec}, \end{cases}$$
(5.18)

gdzie $\beta_2 << \beta_1$. Dobrać tak parametry β_1 , β_2 , t_{br} aby uzyskać profil węgla z maksimum stężenia wewnątrz stali w pobliżu powierzchni.

(b) Zmienne c_{L} Podobnie jak dla β , ale tym razem obniżamy stężenie w atmosferze gazowej, np.

$$c_{L}(t) = \begin{cases} c_{L,1} & \text{dla } t \leq t_{br}, \\ c_{L,2} & \text{dla } t_{br} < t \leq t_{koniec}. \end{cases}$$
(5.19)

Ponieważ nawet przy zerowym stężeniu gazu nawęglającego węgiel nie będzie opuszczał stali, więc należy przyjąć ograniczenie, że strumień nie może być skierowany na zewnątrz stali (użyć w tym celu funkcji **abs**, które oblicza wartość bezwzględną liczby).

(c) Wprowadzić zmienność współczynnika dyfuzji w zależności od temperatury wg wzoru

$$D(T) = 1.2 \cdot 10^{-6} \exp(-32000 / (RT)) [m^2 / s], \qquad (5.20)$$

i przetestować wpływ zmiany temperatury w trakcie nawęglanie na profil stężenia węgla w stali.

Rozwiązanie:

1. Uruchom program *COMSOL Multiphysics* i wybierz *Model Wizard*. Jako *Space Dimmension* wybieramy 1D.

2. W oknie *Select Physics* wybierz interfejs *General Form PDE (g)*. Zmień nazwę zmiennej na *c*, oraz wybierz jednostki *Concentration (mol/m^3)* oraz *Reaction rate (mol/(m^3*s))*.

Select Physics	Review Physics Interface
Search Search Qeneral Form PDE (g) ∆∪ General Form PDE (g) ∆∪ General Form PDE (c) AC/DC AC/DC AC/DC MAcoustics General Species Transport Macoustics Mathematics	General Form PDE (g) Dependent Variables Field name: Number of dependent variables: Dependent variables:
	+ Units Dependent variable quantity Concentration (mol/m^3) Source term quantity Reaction rate (mol/(m^3*s))
Add	
Added physics interfaces: Δυ General Form PDE (g)	

- 3. W sekcji *Study* wybierz *Time Dependent* i zatwierdź projekt klikając *Done*.
- 4. Zdefiniuj parametry występujące w modelu, wprowadzając je do tabeli w *Parameters*, tak jak na poniższej grafice.

Model Builder ← → ↑ ↓ ∓ • Int III + II • 4 Naveralarie - granadek I meh (met	Settings Parameters	- 1	Graphics ବ୍ର୍ଣ୍ଣ	0 🖽 🕹 •		* **	R 10	C 9 6 9	0				~ #
		Description Way, secreting person Secreting and the secret secret secret Secreting and a secret secret secret secret Secretical secret											0
			1	-0.8	0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	

Utwórz domenę obliczeniową. Prawym przyciskiem kliknij *Geometry 1* i z listy wybierz *Interval*.
 W polu *Right endpoint* wprowadź L i kliknij *Build Selected*.

Model Builder	Settings	Gra Q G	phics a ⊕ ⊕	œ √	- 16	i – –	∑∣#		8 40		10	08						- 1
	Label: Interval 1																	•
Composent (comp) Definitions Composent (comp) Community Community	Interval Instructor of instructors Manufacer of instructors Manuf																	
	Seculardo to restancing Landers New Resultings objects selection Secular in physics: Demain selection																	-
			0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.01	0.011	0.012	0.013	0.014	m 0.015

 Wprowadź równania opisujące dyfuzję węgla. W General Form PDE, wprowadź wyrażenie na strumień: -D*cx i wyzeruj Source Term. Zadaj warunek początkowy równy c0.

Model Builder	Settings v a General Form PDE	◎ Graphics 《《ふま 田 少・ 二 〓 → \ ※ ※ 原 服 ※ ■ 国 国 ⊃ ◎ 量	4
Solution A Solution A A	Label: General Form PDE 1		Ē
P: Parameters ¹ Materials	Domain Selection Selector All domains term term		
ight Matrixili 4 Sub General Form DOE (g)	Override and Contribution Equation		
🖻 🗮 Results	Conservative Flux		
	T −0°cx mol/(m*s)		
	 Source Term 		
	f 0 mol/(m ¹ -s		
	 Damping or Mass Coefficient 		
	d _a 1	1	
	 Mass Coefficient 		
	e _a 0	5	
			n
		0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015	5

Zdefiniuj warunki brzegowe. Na lewym brzegu (x=0), reprezentującym kontakt stali z fazą gazową, wprowadź warunek brzegowy *Flux/Source*. W polu tekstowym *Boundary Flux/Source* wprowadź: beta*(cL-c). Ponieważ układ jest pół-nieskończony, domyślny warunek brzegowy *Zero Flux 1* jest odpowiedni na prawym brzegu (x=L).

Model Builder	Settings - +	Graphics
◆ Theraphics properties have have ◆ Cable definitions • C	Lead-Run/Source 1	
Landat Valer: Main 1 A main 2 Main 1 Main 1 Main 2 Main 1 Main 2 Main 1 Main 2 Main 1 Main 2 Main 1 Main	Override and Contribution Equation Boundary Ray/Source Instrict	•

Utwórz siatkę obliczeniową zagęszczoną przy lewym brzegu. Jako *Element Size* wybierz predefiniowany rozmiar *Extremely Fine*. Klikając prawym przyciskiem wybierz z listy *Edge*, a następnie klikając na dodany *Edge* wybierz *Size*. W oknie *Selection* wybierz lewy brzeg i wprowadź parametry: *Maximum element size*: L/10000 oraz *Maximum element growth rate*: 1.15.

Model Builder · · · · · · · · · · · · · · · · · · ·	Settings Size	Graphics
	Build Selected Build All Label: Size 1	ů.
A → Component 1 (comp) ⇒ 0 definitions → A decentry 1 → Terman 1 (comp) → Terman 1 (comp) → Definition 1 (comp) →	Geometric Entry Selection Geometric Entry Level Boundary	
Rau/Souce 1 ▲ Loss 1 ▲ Loss 1 ▲ Loss 1 ▷ Age 1 ▷ Age 1 Time Dependent I Manak	Element Size Calibrate for: Calibrate for: Calibrate for: Calibrate for: Calibrate for: Calibrate for: Predified [Moreal V Element Size Plearanters Makerium demost size Un0000 m Besuitation of namew regione 1	

9. Zanim uruchomisz symulację dodaj elementy, tzw. próbniki (and. Probes), które będą przydatne w "postprocessingu" wyników. Pierwsze trzy pozwolą na obserwację zmian stężenia w funkcji czasu w danym punkcie. Kliknij prawym przyciskiem na Definitions i z listy wybierz Probes>Domain Point Probe. Dodaj trzy próbniki i każdemu z nich przypisz kolejno współrzędne: 0.01*L, 0.02*L oraz 0.05*L.

Model Builder ← → ↑ ↓ ▼ • Ⅲ Ⅲ •	Settings · · ·	Graphics Q Q 魚 令 田 シ・ 二 〓 → \ ※ ⇔ 岡 脳 ◎ 国 国 D @ 自	- 8
	Update Results Label: Domain Point Probe 3 Point Selection		۵
✓ III Definitions ✓ III Definitions ✓ Domain Point Probe 1 ♦ 2 Domain Point Probe 2 ♥ III Domain Point Probe 3 ♥ Utwit ✓ Geometry 1 ✓ Geometry 1	Frame Spatial (x, y, z)		
invariant (10) isotomic (10) isoto		· • •	
		- b baooi baooz baooz baooz baoos baoos baooz baoos baoi baii baiiz baii baiz bai	 15

 Drugim typem próbnika będzie Domain Probe, który posłuży do wyliczenia całkowitej ilości węgla w funkcji czasu. Kliknij prawym przyciskiem na Definitions i z listy wybierz Probes>Domain Probe. Zmień Probe Type na Integral i w polu Expression wpisz wyrażenie c*A.

Model Builder ← → ↑ ↓ ∓ • Ⅲ* Ⅲ •	Settings Domain Probe	Gra	aphics a 🙉 🕸		- =		×∣ #	+ R)	8 as		C 1	0						~ 1
	C' Update Results Label: Domain Probe 1 [7] Variable name: dom1 Tanga Antice State S																	a
# 2 Domain Point Probe 1 # 2 Domain Point Probe 2 # 2 Domain Point Probe 3 # Domain Point Probe 3 # Domain Probe 1 (dom 1) * Ed Veren 1	Fire Integral Source Selection)																
 ✓ Geometry 1 → Enterval (//) ➡ Form Union (finit) ➡ Materials ▲ General Form POE () ➡ General Form POE 1 ➡ Tace Flux 1 ➡ Tain () 	Stetcher All dominis T Active																	
Flux/Source 1 Mesh 1 Size	• Expression																	
▲ ▲ Gogn 1 *** Dody 1 ▲ *** Dody 1 ▲ See 1: Time Dependent + ▲ Results	Expression c'A Table and plot unit: rind v Decorption c'A																	
	Integration Settings Table and Window Settings																	
		-	0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.01	0.011	0.012	0.013	0.014	m 0.015

 Wykonaj obliczenia dla czasów: 0 0.1 0.5 1 2 5 10 50 100 200 300 400 500 3600 7200 10800 s. Przeanalizuj wykresy. Przygotuj i odpowiednio sformatuj trzy wykresy: 1) rozkład stężenia węgla w próbce dla różnych czasów, 2) zmiana stężenia w funkcji czasu dla różnych *Point Probe* oraz 3) zmiana całkowitej zawartości węgla w próbce w funkcji czasu.

Model Ruilder	Settings	~ 1	Graphics Probe Plot 1 Convergence Plot 1	~ 8
	Time Desertion			
	Time Dependent			
A Strange - przypadek 1.mph (root)	- Compute C Opdate solution			
4 Global Definitions	Label: Time Dependent			
1 Materials				
 Component 1 (comp1) 	▼ Study Settings			
✓	* h [-			
Domain Point Probe 1	Time unit: 3			
Domain Point Probe 2	Times: 0 0.1 0.5 1 2 5 10 50 100 200 300 400 500	0 3600 7200 10800 s 🔜		
Domain Point Probe 3	Tolerance: Physics controlled			
b Week 1	indunce in the second second			
A A Geometry 1	Results While Solving			
Interval 1 (i1)	· Phyrics and Variables Selection			
Form Union (fin)	 Physics and variables deection 			
🚦 Materials	Modify physics tree and variables for study step	,		
4 Δυ General Form PDE (g)	** Physics interface	Solve for Discretization		
General Form PDE 1				
Initial Values 1	General Form PDE (g)	 Physics settings 		
Flux/Source 1	 Malues of Dependent Variables 			
🔺 🚵 Mesh 1	values of Dependent variables			
Size	Mesh Selection			
A 🖾 Edge 1	Study Extensions			
A Size I				
A Step 1: Time Dependent				
Solver Configurations				
🔺 🍓 Results				
Data Sets				
Derived Values				
Tables				
A Ox Probe Plot Group 2				
Probe Table Graph 1				
Seport Seport				
E Reports				m
			0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.011 0.012	0.013 0.014 0.015

Zadanie 3. Rozwinięcie Zadania 1 – zapisz przygotowany plik pod nową nazwą i wprowadź opisane poniżej modyfikacje.

W praktyce nawęglanie prowadzi się cykliczne, tj. stężenie gazu nawęglającego zmienia się w czasie (najprostszy przypadek to dwuetapowe nawęglanie). Można także obniżyć temperaturę co prowadzi do obniżenia współczynnika dyfuzji *D*. Celem takiego procesu jest uzyskanie profilu nasycenia węglem, który jest bardziej wyrównany w pobliżu powierzchni (poprawia to twardość powierzchniową stali).

Zastosuj różne warianty cyklicznego procesu nawęglania:

(a) Zmienne β , np.

$$\beta(t) = \begin{cases} \beta_1 & \text{dla } t \le t_{br}, \\ \beta_2 & \text{dla } t_{br} < t \le t_{koniec}, \end{cases}$$
(5.21)

gdzie $\beta_2 \ll \beta_1$. Wykonaj testowe obliczenia dla różnych wartości parametrów β_1 , β_2 , t_{br} , tak aby zaobserwować ich wpływ na proces wnikania węgla do stali. Wartości współczynników wnikania, powinny różnić się o kilka rzędów wielkości. Zdefiniuj nowe parametry **beta1**, **beta2** oraz **tbr**.

<u>Podpowiedź:</u> Równanie (5.21) można wprowadzić modyfikując wyrażenie na strumień za pomocą funkcji *if*, której składnia to: *if(warunek, wynik1, wynik2)*. W naszym przypadku powinna być zdefiniowana jako wyrażenie: **if(t<=tbr,beta1,beta2)*(cL - c)**.

Model Builder	Settings **	Graphics Probe Plot 1 Convergence Plot 1 ~ * #
	Flux/Source	● ◎ ○ 豆 図 ● ∞ ※ ※ = = = → → = = →
	Label: Flux/Source 1	a
11 Materials	 Boundary Selection 	
 Component 1 (comp 1) 	Selection: Manual	
Comman Point Probe 1 Comman Point Probe 2 Comman Point Probe 2 Comman Point Probe 2 Comman Point Probe 3 Domain Point Probe 3 Domain Point Probe 3 Comman Point 1 (dom 1) Comman Point 1 (dom 1) Commany 1 Comma	[20] 1 (20) (20) (20) (20) (20) (20) (20) (20)	
Materials	Override and Contribution	
▲ Δu General Form PDE (g)	> Equation	
General Form PDt 1 Z - Zero Flux 1 Fundal Values 1 Flux/Source 1 A field to 1 A field to 1 A field to 1	Boundary ReurSource dits=tbc;beta1;beta2/r(cl = c) meV(m ² x) Boundary Absorption/Impedance Term	·
		m b baou baoz baou baos baos baos baos baos baos baos bau bau bau bau bau bau

(b) Wprowadź zmienny współczynnik dyfuzji zależny od temperatury:

$$D(T) = 1.1 \cdot 10^{-6} \exp(-32000 / (RT)) [m^{2} / s], \qquad (5.22)$$
aby przetestować wpływ temperatury nawęglania na profil stężenia węgla w stali.

<u>Podpowiedź:</u> Zdefiniuj parametr **T** w węźle *Parameters*, który będzie przechowywał wartość temperatury i wykorzystaj go w *Parametric sweep* w węźle *Study*. Współczynnik dyfuzji zdefiniuj jako zmienną **DT** wzorem: D*exp(-32000/R/T) węźle *Variables*.

Bibliografia

- 1. A. Moszczyński, "Nawęglanie gazowe stali", Wydawnictwa Naukowo-Techniczne, 1983.
- 2. M. Blicharski, Inżynieria materiałowa, Wydawnictwo Naukowe PWN, 2017.
- 3. W.D. Callister, Jr., D.G. Rethwisch, Materials Science and Engineering, Wyd 8, Wiley, 2011.

5.3. Zjawisko Halla – czujniki ABS i ESP

Wprowadzenie. Zjawisko Halla zostało odkryte w 1879 r. przez amerykańskiego fizyka Edwina Halla podczas pracy nad doktoratem. Polega ono na powstawaniu napięcia (różnicy potencjałów elektrycznych) w przewodniku z płynącym prądem, który jest umieszczony w polu magnetycznym prostopadłym do kierunku prądu (tak na prawdę ważne jest, aby pole magnetyczne nie było równoległe do kierunku przepływu prądu) – Rys. 5-6. Napięcie to zależy od natężenia prądu przepływającego przez przewodnik (lub półprzewodnik) oraz od wartości zewnętrznego pola magnetycznego.

Zjawisko to jest wykorzystywane w wielu dziedzinach nauki i techniki. Na przykład w przemyśle motoryzacyjnym często stosuje się tzw. *czujniki hallotronowe* jako czujniki prędkości obrotowej, położenia wału korbowego lub wałka rozrządu, jako czujniki przyspieszenia czy czujniki wychylenia kątowego. W dawniejszych rozwiązaniach układów zapłonowych efekt Halla był wykorzystywany jako element nadajnika impulsów zapłonowych (zastępował w tej roli wcześniej używane mechaniczne rozdzielacze zapłonu).

Rys. 5-6 Schemat powstawania napięcia Halla $V_{\rm H}$. Prąd o natężeniu I traktujemy jako ruch elektronów (ładunek e) z prędkością v. Zwrot v jest przeciwny do prądu (zgodnie z konwencją, że zwrot prądu jest zgodny z ruchem ładunków dodatnich).

Teoria. Jakościowe wyjaśnienie klasycznego zjawiska Halla opiera się na obserwacji, że prąd elektryczny jest uporządkowanym ruchem nośników ładunku. W metalu są to elektrony. Jeżeli przewodnik jest umieszczony w polu magnetycznym **B** prostopadłym do kierunku przepływu prądu *I*, to na poruszające się elektrony działa siła Lorentza (szczegóły niżej) prostopadła do prędkości elektronów (a więc także do prądu) oraz do pola magnetycznego. Powoduje ona zatem odchylanie strumienia elektronów w jedną stronę przewodnika powodując tam nadmiar ładunku ujemnego, a po przeciwnej stronie nadmiar ładunku dodatniego. W efekcie tego rozdzielenia pojawia się pole elektryczne w kierunku prostopadłym do pola magnetycznego i prądu.

Na ładunek q poruszający się z prędkością v w obszarze gdzie występuje pole magnetyczne B działa siła Lorentza

$$\mathbf{F} = q \boldsymbol{\upsilon} \times \mathbf{B}. \tag{5.23}$$

Z tego wzoru wynika, że siła ta jest prostopadła do v i **B**. Wyrażenie na siłę (5.23) upraszcza się gdy wektory prędkości i indukcji pola magnetycznego są prostopadłe, $v \perp B$. Wtedy wartość tej siły wynosi⁹

$$F = q \upsilon B. \tag{5.24}$$

Jak już wspomniano, w przewodniku (lub półprzewodniku), w którym płynie prąd o natężeniu *I* poruszają się ładunki. Jeżeli taki przewodnik umieścimy w zewnętrznym polu magnetycznym, najlepiej prostopadłym do przewodnika, to na poruszające się w nim elektrony będzie działać siła o wartości (5.24) powodująca odchylenie ładunków w jedną stronę przewodnika. Zatem po jednej stronie będzie nadmiar elektronów, a po drugiej ich niedobór. Powstaje rozdzielenie ładunku powodujące pojawienie się pola elektrycznego \mathbf{E}_H o kierunku prostopadłym do przewodnika (jest to stwierdzenie przybliżone dla przewodników o skończonej długości). Pole to wytwarza napięcie V_H (*napięcie Halla*). Jeżeli przyjąć przybliżenie, że pole \mathbf{E}_H jest stałe, a szerokość przewodnika wynosi *L*, to otrzymujemy (por. Rys. 5-6)

$$V_{H} \approx E_{H}L$$
 (5.25)

Wartość pola E_H można oszacować przyjmując, że siła Lorentza (5.24) zrównuje się z siłą elektryczną qE_H pochodzącą od pola elektrycznego, $qE_H = q \upsilon B$, skąd

$$E_{H} \approx \upsilon B \Rightarrow V_{H} \approx \upsilon B L \tag{5.26}$$

Możemy teraz wyrazić napięcie Halla przy pomocy natężenia prądu *I*. W tym celu załóżmy, że przekrój przewodnika jest prostokątem o szerokości *L* i wysokości *d*. Wtedy *I* = $(ne \upsilon)/(Ld)$, gdzie *n* jest gęstością nośników ładunku (np. elektronów) wyrażoną jako liczbach nośników ładunków na objętość oraz *e* to ładunek elementarny. Stąd $\upsilon = I/(neLd)$ co po wstawieniu do (5.26) daje

$$V_{H} \approx \frac{IB}{ned}.$$
(5.27)

Jak widać napięcie Halla jest proporcjonalne do natężenia prądu i do pola magnetycznego, a odwrotnie proporcjonalne do wysokości *d* (grubość płytki). Zależność ta wyjaśnia także dlaczego ważne jest aby podstawowy element czujnika Halla był w postaci cienkiej płytki (małe *d* powoduje, że napięcie V_H staje się wystarczająco duże). W praktyce taki przewodnik uzyskuje się np. napylając na podłoże z izolatora (szkło, polimery) warstwę metalu lub półprzewodnika.¹⁰

Wzór (5.27) został wyprowadzony przy pewnych założeniach i jest przybliżony – ale jakościowo dobrze opisuje zjawisko. Przede wszystkim <u>założono</u>, że *pole elektryczne jest stałe i prostopadłe do kierunku przepływu prądu*. Mimo tego w wielu przypadkach wzór ten daje dobre rezultaty.

Dokładny opis i sformułowanie problemu w 2D. W celu dokładniejszego opisu zjawiska Halla wykorzystamy następujący model. Cienka prostokątna metalowa płytka leży na płaszczyźnie XY – Rys. 5-7. Górna krawędź ma przyłożony potencjał V_{app} i leży na prostej y=H, a dolna ma potencjał 0 i leży na prostej y=0. Ta różnica potencjałów powoduje przepływ prądu w kierunku OY. Płytka jest umieszczona w polu magnetycznym **B** = [0, 0, *B*] czyli linie pola magnetycznego są prostopadłe do

⁹ Przypomnijmy długość iloczynu wektorowego: $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \alpha$ gdzie α to kąt między wektorami. Gdy wektory są prostopadłe, to $\alpha = \pi/2$ zatem sin $(\alpha) = 1$.

¹⁰ W oryginalnym doświadczeniu przeprowadzonym przez Halla w Johns Hopkins University była to cienka folia ze złota przymocowana do szklanej płytki. Poprzednie eksperymenty wykonywane przez prof. Rowlanda (promotor Halla) zakończyły się niepowodzeniem (nie można było wykryć powstającego napięcia), gdyż przewodnik był zbyt gruby.

płaszczyzny XY. Naszym zadaniem jest teraz wyznaczenie rozkładu potencjału elektrycznego V=V(x,y) w płytce. Znajomość pola potencjału da nam w szczególności różnicę potencjałów pomiędzy krawędziami "pionowymi" (czyli – napięcie Halla).

Z elektrostatyki wiadomo, że potencjał w przewodniku metalicznym, w którym płynie stacjonarny prąd spełnia równanie Laplace'a:

$$\nabla^2 V = 0. \tag{5.28}$$

Warunki brzegowe na górnej i dolnej krawędzi są oczywiste (wynikają z przyłożonego napięcia):

$$V(x,H) = V_{app}, \quad V(x,0) = 0.$$

$$y = H$$

$$V = V_{app}$$

$$\Delta V = 0$$

$$V = 0$$

$$V = 0$$

$$V = 0$$

$$V = 0$$

$$X = L$$

$$X$$

$$(5.29)$$

Rys. 5-7 Geometria i warunki do sformułowania problemu wyznaczenia napięcia Halla. Wewnątrz przewodnika (szary prostokąt) spełnione jest równanie Laplace'a dla potencjału, $\Delta V = 0$ (inny zapis, $\nabla^2 V = 0$). Wektor pola magnetycznego **B** jest prostopadły do płaszczyzny rysunku.

Aby można było rozwiązać problem musimy jeszcze ustalić poprawne warunki brzegowe na krawędziach "pionowych" (dla x=0 oraz x=L). Podstawowym faktem, który zostanie wykorzystany jest obserwacja, że żadne ładunki nie opuszczają i nie wchodzą do próbki przez te krawędzie!

Gdy nie występuje pole magnetyczne, to *prawo Ohma* dla materiału jednorodnego o przewodności właściwej σ ma postać

$$\mathbf{j} = \sigma \mathbf{E} \tag{5.30}$$

gdzie **j** jest gęstością prądu wywołaną polem elektrycznym **E**. Gdy występuje pole magnetyczne **B**, to oprócz siły elektrycznej (Coulomba) działa jeszcze siła magnetyczna (Lorentza), której wartość na jednostkę ładunku wynosi $\boldsymbol{v} \times \mathbf{B}$ (por. (5.23)). Gęstość prądu jest powiązana z prędkością ruchu ładunków następująco: **j** = *ne* \boldsymbol{v} , zatem dodatkowa siła wynosi $\frac{1}{ne}\mathbf{j} \times \mathbf{B}$. Uwzględniając tę siłę, równanie (5.30) przyjmie postać

$$\mathbf{j} = \sigma \mathbf{E} + \frac{\sigma}{ne} \mathbf{j} \times \mathbf{B}. \tag{5.31}$$

Ponieważ zakładamy przepływ prądu 2D (płytka jest bardzo cienka), tzn. nie uwzględniamy składowych z, więc $\mathbf{j} = [j_x, j_y, 0]$, $\mathbf{E} = [E_x, E_y, 0]$. Równanie (5.31) po wykonaniu operacji iloczynu wektorowego

$$\mathbf{j} \times \mathbf{B} = [j_x, j_y, 0] \times [0, 0, B] = [j_y B, -j_x B, 0]$$
(5.32)

rozpisane na składowe przyjmuje postać:

$$j_x = \sigma E_x - \frac{B}{ne} j_y = 0, \quad j_y = \sigma E_y - \frac{B}{ne} j_x = 0.$$
 (5.33)

Z powyższych równań wyliczamy:

$$j_{x} = \sigma \frac{E_{x} - \frac{\sigma B}{ne} E_{y}}{1 + \left(\frac{\sigma B}{ne}\right)^{2}}, \quad j_{y} = \sigma \frac{E_{y} + \frac{\sigma B}{ne} E_{x}}{1 + \left(\frac{\sigma B}{ne}\right)^{2}}.$$
(5.34)

Teraz możemy sformułować matematycznie warunek brzegowy na lewej (x=0) i prawej (x=L) krawędzi: składowe strumienia w kierunku x ("poziomym") są równa zero,

$$j_{x}(0,y) = 0, \quad j_{x}(L,y) = 0 \quad \text{dla} \quad 0 \le y \le H.$$
 (5.35)

Wykorzystując wzory (5.34) warunki te oznaczają:

$$E_{x}(0,y) = \frac{\sigma B}{ne} E_{y}(0,y), \quad E_{y}(L,y) = -\frac{\sigma B}{ne} E_{x}(L,y).$$
(5.36)

Ponieważ problem jest sformułowany przy pomocy potencjału elektrycznego (por. (5.28), (5.29)), więc warunki (5.36) też powinniśmy wyrazić potencjałem. W elektrostatyce zależność pomiędzy polem elektrycznym (natężeniem pola) a potencjałem elektrycznym to $\mathbf{E} = -\nabla V$, czyli rozpisując na składowe: $E_x = -\frac{\partial V}{\partial x}, E_y = -\frac{\partial V}{\partial y}$. Te zależności wstawiamy do warunków brzegowych (5.36). Podsumowując

mamy następujący problem do rozwiązania w COMSOLu:

dziedzina:
$$(x,y) \in \Omega = [0, L] \times [0, H],$$

równanie: $\Delta V = 0$ dla $(x,y) \in \Omega,$
warunki brzegowe: (5.37)
 $V(x,H) = V_{app}, \quad V(x,0) = 0,$
 $\frac{\partial V}{\partial x}(0,y) = \frac{\sigma B}{ne} \frac{\partial V}{\partial y}(0,y), \quad \frac{\partial V}{\partial y}(L,y) = -\frac{\sigma B}{ne} \frac{\partial V}{\partial x}(L,y).$

Zadanie 1. Znajdź napięcie Halla V_{H} , potencjał w przewodniku V(x,y) oraz linie gęstości prądu **j** w prostokątnym przewodniku umieszczonym w prostopadłym do prostokąta polu magnetycznym **B**.

Rozwiązanie: Z modelu matematycznego (5.37) widać, że w warunkach brzegowych występuje $(\sigma B) / (ne)$. Dlatego w obliczeniach posłużymy się parametrem $\lambda = (\sigma B) / (ne)$. Dla danego metalu wielkości σ i *n* są dane i stałe (zakładamy, że układ jest w ustalonej temperaturze). Ładunek elektronu jest także stały, więc współczynnik λ opisuje wpływ pola magnetycznego *B*, do którego jest proporcjonalny. Używająca tego oznaczenia warunki brzegowe przyjmą postać

$$\frac{\partial V}{\partial x}(0,y) = \lambda \frac{\partial V}{\partial y}(0,y), \quad \frac{\partial V}{\partial x}(L,y) = -\lambda \frac{\partial V}{\partial y}(L,y).$$
(5.38)

Najtrudniejszą kwestią w realizacji w COMSOLu będzie właśnie wprowadzenie tych warunków. W tym celu będzie wykorzystamy dla "pionowych" krawędzi warunek typu *Flux/Source*.

Składowe gęstości prądu obliczymy ze wzorów (5.34), co po uwzględnieniu $E_x = -\partial V/\partial x$, $E_y = -\partial V/\partial y$ oraz wyrażenia $\lambda = \sigma B/ne$ daje

$$j_{x} = \frac{\sigma}{1 + \lambda^{2}} \left(\frac{\partial V}{\partial x} - \lambda \frac{\partial V}{\partial y} \right), \quad j_{y} = \frac{\sigma}{1 + \lambda^{2}} \left(\frac{\partial V}{\partial y} + \lambda \frac{\partial V}{\partial x} \right).$$
(5.39)

Zauważmy, że do obliczenia gęstości prądu nie wystarczy tylko znajomość współczynnika λ , musimy jeszcze znać wartość przewodności właściwej σ materiału. Z drugiej strony do wyznaczenia samej geometrii linii prądu nie jest on potrzebny, bo obie składowe j_x i j_y są jak widać ze wzorów (5.39) proporcjonalne do tej samej stałej $\sigma/(1+\lambda^2)$. Dlatego w **Przykładzie 1** do wyznaczenia linii prądu posłużymy się wyrażeniami:

$$\overline{j}_{x} = \frac{\partial V}{\partial x} - \lambda \frac{\partial V}{\partial y}, \quad \overline{j}_{y} = \frac{\partial V}{\partial y} + \lambda \frac{\partial V}{\partial x}.$$
 (5.40)

- 1. Uruchom program COMSOL Multiphysics i wybierz Model Wizard.
- 2. W sekcji Select Space Dimension wybierz geometrię 2D.
- 3. W *Select Physics* wybierz interfejs *Laplace Equation (lpeq)* i kliknij *Add*. Zmień nazwę zmiennej w polu *Dependent variables* na **V**.

Select Physics	Review Physics Interface
Search	Laplace Equation (Ipeq)
A Constant Form DDE (a)	Dependent Variables
² Poisson's Equation (poeq) △u General Form Boundary PDE (gb)	Dependent variable:
△u Coefficient Form PDE (c) Laminar Flow (spf) AC/DC	Units
D (1)) Acoustics	Dependent variable quantity
Chemical Species Transport	Dimensionless (1)
P I Fluid Flow	Source term quantity
	None
▲ ∆u Mathematics	Unit:
▷ Δυ PDE Interfaces	m^-2
ODE and DAE Interfaces	
Optimization and Sensitivity	
V~ Classical PDEs	
∇ ² Stabilized Convection-Diffusion Equation (scdeq)	
∇ ² Wave Equation (waeq)	
√ ² Helmholtz Equation (hzeq)	
⁷² Heat Equation (hteq) ⁷³	
Convection-Diffusion Equation (cdeq) Pefermed Math	
Wall Distance (wd)	
Curvilinear Coordinates (cc)	
Added physics interfaces:	J
C C C C C C C C C C C C C C C C C C C	

- 4. W sekcji Select Study wybierz opcję Stationary i zatwierdź klikając Done.
- 5. Definiowanie modelu zacznij od wprowadzenia parametrów. Kliknij prawym przyciskiem na *Global Definitions* i z listy wybierz *Parameters*. Wprowadź do tabeli dane zgodnie z poniższą grafiką:

 Wykonaj geometrię. Kliknij prawym przyciskiem myszy węzeł Geometry 1 i z listy wybierz Rectangle. W polu Width wprowadź L, a w polu Height: 2*H. Zatwierdź geometrię klikając Build Selected.

Model Builder * #	Settings ••	Graphics Convergence Plot 1 v a
+ → ↑ ↓ ∓ + Ⅲ Ⅲ +	Rectangle	Q. Q. A. + 🔛 🔶 - E 🗃 📾 📾 📾 📾 📾 📾 📾 📾 E つ 📾 🖶
	Build Selected Build All Objects Lobel: Rectangle 1	2
is Materials Georgeometric (comp1) Example = Definitions A \Geometry 1	▼ Object Type Type Solid ▼	1.8
	▼ Size and Shape Width: L m Heinbe: 2 ¹ H m	1.6
Zero Flux 1 Initial Values 1 Function View	* Position	1.4
▲ Mesh 1 4 ☆ Study 1 Step 1: Stationary	Base Corner • x: 0 m v: 0 m	1.2
	▼ Rotation Angle	
	Rotation: 0 deg	
	Layers Selections of Resulting Entities	0.6
	Contribute to: Hone Hone Hone Hone Hone Hone Hone Hone Hone Hone Hone	0.4 0.7 0
		μ

- 7. Wybierając w drzewie projektu *Laplace Equation 1* widzimy, że jest tam już równanie Laplace'a w formie: $\nabla \cdot (-\nabla V)=0$, co jest równoważne $\Delta V = 0$.
- Na górnym brzegu (y=2) zadaj stały potencjał. Kliknij prawym przyciskiem na węzeł Laplace equation i wybierz z listy Dirichlet Boundary Condition. W polu Prescribed value of V wprowadź VO.

9. Na dolnym brzegu (y=0) zadaj stały potencjał równy -VO.

10. Zdefiniuj warunki brzegowe na krawędziach "pionowych" (lewej i prawej). Tym razem jako typ warunku brzegowego wybierz *Flux/Source*. Następnie kliknij lewą krawędź w oknie *Graphics*,

rozwiń *Boundary Absorption/Impedence Term*, aby pokazać pole *q*. Chcemy zdefiniować warunek brzegowy dla *x*=0 na podstawie (5.38): $\frac{\partial V}{\partial x}(0, y) = \lambda \frac{\partial V}{\partial y}(0, y)$. Aby to uzyskać, należy w pole *g* wpisać –lam*Vy, a w polu *q* zostawić domyślne **0**.

11. Podobnie definiujemy warunek brzegowy na "prawej" krawędzi. Tym razem jest to warunek dla x=L, czyli $\frac{\partial V}{\partial x}(L,y) = \lambda \frac{\partial V}{\partial y}(L,y)$. Tym razem będzie podobnie, ale ze względu na inny (przeciwny) kierunek wektora normalnego nie będzie znaku minus. Zatem w pole tekstowe *g* wpisujemy **lam*Vy**, a w polu q zostawiamy **0**.

- 12. Zdefiniuj siatkę. Kliknij węzeł *Mesh*, a następnie w oknie *Settings* jako *Element size* wybierz *Extra fine*.
- Uruchom obliczenia, kliknij *Compute*. Po chwili obliczenia się skończą, a program wygeneruje standardowy wykres, który przedstawia potencjał *V*(*x*,*y*). Jak widzimy linie stałego potencjału (*linie ekwipotencjalne*) nie są równoległe do poziomych krawędzi!

	Settings 2D Plot Group	Graphics Q Q (R) III III III - III - III		
	Call Plot		Surface: Dependent variable V (1)	
Pi Parameters	Label: 2D Plot Group 1	2 m 2 -]
Materials	▼ Data			1.5
Definitions		1.0		
Geometry 1	Data set: Study I/Solution 1 (Sol1)	1.0		1
Rectangle 1 (r1)	> Title			
The second secon	* Blot Settings	1.6 -		1 1
✓ ∇ ² Laplace Equation (lpeq)	· Flot Settings			
Laplace Equation 1	View: Automatic •	6 14		
Determinitial Values 1	x-axis label:			
Dirichlet Boundary Condition 1	v-axis label:			0.5
Dirichlet Boundary Condition 2	Show hidden entities	1.2 -		1 📘
Elux/Source 2	Propagate hiding to lower dimensions			
## Equation View	Plot data set edges	1-		
Mesh 1	Color Black			0
Step 1: Stationary	Former Metanial (V, V, 7)			
Solver Configurations	Prame: Indicinal (A, 1, 2)	0.8 -		1
4 🝓 Results	* Color Legend			
Data Sets	· coortegena	0.6 -		-0.5
HI Tables	Show legends			
2D Plot Group 1	Show maximum and minimum values			
Reports	Show units	0.4		1
-	Position: Right *			-1
	Text color: Black •	0.2 -		
	Number Format	0-		
	Vindow Settings			J1.5

14. Sprawdź co się stanie, gdy nie będzie pola magnetycznego. Ponieważ $\lambda = \frac{\sigma B_0}{ne}$, więc brak pola oznacza, że λ =0. Wpisz zatem w oknie *Parameters* **0** dla parametru **lam** i uruchom ponownie obliczenia. Otrzymamy następujący wynik:

Widać, że linie ekwipotencjalne są równoległe do krawędzi "poziomych" gdy nie ma pola magnetycznego.

Zadanie 2. Wykonaj wykresy: (a) potencjału w formie powierzchni (typ 2D Plot Group -> Surface); (b) linii ekwipotencjalnych – stałego potencjału (typ 2D Plot Group -> Contour); (c) linii sił natężenia pola elektrycznego, czyli $\mathbf{E} = -\nabla V = [-\frac{\partial V}{\partial x}, -\frac{\partial V}{\partial y}]$ (typ 2D Plot Group -> Arrow Surface); (d) wykres ilustrujący linie przepływu prądu (patrz równanie (5.31) i (5.32), należy wyliczyć J_x oraz J_y) – użyj typ wykresu 2D Plot Group -> Streamline.

Bibliografia

- 1. S. Szczeniowski, "Fizyka doświadczalna, cz. III: Elektryczność i magnetyzm", PWN, 1998.
- 2. C. Kittel , "Wstęp do fizyki ciała stałego", Wydawnictwo Naukowe PWN, 2025.
- 3. D. Halliday, R. Resnick, J. Walker, "Fizyka", Wydawnictwo Naukowe PWN, 2015.

5.4. Korozja prętów zbrojeniowych w betonie

Wprowadzenie. Korozja¹¹ stalowych elementów zbrojenia w betonie jest jedną z najczęściej występujących przyczyn degradacji struktur żelbetowych. Dlatego wczesna identyfikacja korozji zbrojenia jest istotna dla bezpieczeństwa takich struktur oraz wprowadzenia właściwych procedur naprawczych. Modelowanie zjawisk występujących w trakcie korozji zbrojenia w żelbecie jest ważnym narzędziem, które w sposób niedestrukcyjny pozwala na lepsze zrozumienie tych procesów, przewidywanie zachowania się konstrukcji oraz lepsze zaprojektowanie nowo powstających. Ponadto połączenie modelowania z pomiarami korozyjnymi na istniejących obiektach pozwala na duże obniżenie kosztów związanych z monitorowaniem stanu konstrukcji żelbetowych.

Korozja zbrojenia jest przede wszystkim procesem elektrochemicznym zachodzącym na granicy beton/zbrojenie, w którym żelazo – główny składnik stali – ulega utlenianiu w środowisku cieczy wypełniającej pory betonu:

$$Fe \rightarrow Fe^{2+}(aq) + 2e^{-} \tag{5.41}$$

Atomy żelaza przechodzą ze struktury krystalicznej metalu do wodnego roztworu w postaci jonów, a nadmiarowe elektrony pozostają w metalu i muszą być zużyte w sprzężonej z reakcją (5.41) reakcji redukcji. W przypadku korozji zbrojenia w żelbecie, gdy w roztworze wodnym kontaktującym się z powierzchnią metalu jest rozpuszczony tlen atmosferyczny, reakcją tą jest redukcja tlenu

$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-(aq) \tag{5.42}$$

Natomiast w odpowietrzonej wodzie lub w roztworach kwasów nieutleniających dominuje reakcja wydzielania wodoru

$$2H^{+}(aq) + 2e^{-} \rightarrow H_{2} \tag{5.43}$$

Schematycznie możemy to przedstawić jak na rysunku (Rys. 5-8) w przypadku reakcji redukcji (5.42). Sytuacja pokazana na Rys. 5-8, w którym obszary utleniania i redukcji są wyraźnie oddzielone (przestrzennie) odpowiada tak zwanej *korozji zlokalizowanej* (zwanej też *galwaniczną*). W tym przypadku powstaje coś w rodzaju makro-ogniwa galwanicznego gdzie prąd elektronowy płynie w metalu (elektrony są transportowane od obszarów anodowych do katodowych), a równocześnie prąd jonowy płynie przez elektrolit w porach betonu od anody do katody. Innym możliwym przypadkiem jest sytuacja, w której obszary utleniania i redukcji nie są oddzielone przestrzennie, to mamy do czynienia z korozją jednorodną (ang. *uniform corrosion*) – tworzą się wtedy mikro-ogniwa. W prezentowanym projekcie będziemy rozważać przypadek korozji galwanicznej, czyli z makro-ogniwami.

¹¹ "Korozją nazywamy całkowity, samorzutny, często nieodwracalny, proces oddziaływania metalu z otaczającym go środowiskiem, w wyniku czego może nastąpić zniszczenie metalu." [A. Kisza, Elektrochemia cz. II – Elektrodyka, WNT Warszawa, 2001].

Rys. 5-8 Schemat reakcji korozyjnych na powierzchni zbrojenia. Pokazany jest przepływ elektronów od obszaru anodowego (utlenianie żelaza) do katodowego (redukcja tlenu). Czarne strzałki pokazują ogólny kierunek przepływu prądu elektrycznego (umowny ruch ładunków dodatnich).

W rzeczywistych strukturach sytuacja może być bardziej złożona niż ta opisana tylko dwiema reakcjami elektrodowymi (5.41) i (5.42). Na przykład kationy Fe²⁺ mogą reagować z anionami OH⁻, a produkty ich reakcji ulegać dalszym przekształceniom:

$$Fe^{2^{+}} + 2OH^{-} \rightarrow Fe(OH)_{2}$$

$$4Fe(OH)_{2} + 2H_{2}O + O_{2} \rightarrow 4Fe(OH)_{3}$$

$$2Fe(OH)_{3} \rightarrow 2H_{2}O + Fe_{2}O_{3} \cdot H_{2}O$$

$$Fe(OH)_{2} + nH_{2}O \rightarrow Fe_{2}O_{3} \cdot (n+2)H_{2}O$$
(5.44)

Reakcje te prowadzą w konsekwencji do powstania niejednorodnego (heterogenicznego) złożonego produktu wielofazowego o zmiennej stechiometrii, który potocznie nazywamy rdzą (głównie uwodnione tlenki i wodorotlenki żelaza na różnych stopniach utlenienia: Fe₂O₃·*n*H₂O, FeOOH, Fe(OH)₃). Powyższe reakcje nie są jednak reakcjami elektrodowymi – zachodzą one w objętości roztworu, a nie na powierzchni w wyniku przeniesienia ładunku. W projekcie nie będziemy uwzględniali takich reakcji objętościowych.

Aby w miarę dokładnie opisać procesy zachodzące podczas korozji należy jako minimum uwzględnić reakcje elektrodowe (5.41) i (5.42) na powierzchni zbrojenia, a także transport tlenu w betonie, gdyż jest on niezbędny do redukcji katodowej. Ponadto jego stężenie w objętości nie musi być stałe, gdyż tlen jest zużywany na prętach zbrojeniowych (w obszarach katodowych), a z drugiej strony jego stężenie jest względnie stałe na zewnętrznych powierzchniach otuliny betonowej, które są w kontakcie z atmosferą. Prowadzi to do zmiennej w przestrzeni i czasie dystrybucji tlenu, która zależy od szybkości reakcji na prętach, szybkości transportu tlenu oraz geometrii całego układu.

Modelowanie korozji zbrojenia w żelbecie

Równania. Szybkość korozji w dowolnym punkcie na powierzchni stali w betonie jest powiązana z gęstością prądu, którą można obliczyć gdy rozkład potencjału elektrycznego w otoczeniu tego punktu jest znany. W modelu przyjmiemy, że w betonie obowiązuje ogólne prawo Ohma

$$\mathbf{j} = \sigma \mathbf{E}, \tag{5.45}$$

gdzie **j** to gęstość prądu (A/m²), σ to przewodność elektrolityczna wilgotnego betonu (S/m), **E** to natężenie pola elektrycznego (N/C). Jednostką przewodności jest S/m czyli simens na metr, gdzie simens jest odwrotnością oma, S= Ω^{-1} , dlatego jednostkę przewodności wyraża się też jako $\Omega^{-1} \cdot m^{-1}$.

Natężenie pola elektrycznego można wyrazić poprzez potencjał elektryczny φ : **E**= $-\nabla \varphi$.¹² Korzystając z tego oraz używając oporności betonu (ρ =1/ σ) będziemy posługiwać się następująco wyrażonym prawem Ohma

$$\mathbf{j} = -\frac{1}{\rho} \nabla \varphi. \tag{5.46}$$

Ponieważ w objętości betonu nie będą występowały źródła ładunku, więc z prawa zachowania ładunku div **j**=0 (dywergencja wielkości wektorowej często oznacza jest też symbolem ∇ , więc można spotkać zapis ∇ ·**j** = 0). Gdy przyjmiemy, że oporność właściwa ρ jest stała w całym betonie (przybliżenie!), to ponieważ

$$\mathbf{0} = \operatorname{div} \mathbf{j} = \operatorname{div} \left(-\frac{1}{\rho} \nabla \varphi\right) = -\frac{1}{\rho} \operatorname{div} \left(\nabla \varphi\right) = -\frac{1}{\rho} \Delta \varphi, \tag{5.47}$$

zatem równanie na potencjał jest znanym z elektrostatyki równaniem Laplace'a

$$\Delta \varphi = \mathbf{0}.\tag{5.48}$$

Jest to równanie różniczkowe cząstkowe, które w układzie prostokątnym można zapisać tak (przypadek dwuwymiarowy i trójwymiarowy):

$$2D: \quad \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0, \quad 3D: \quad \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0. \tag{5.49}$$

Dynamika transportu tlenu wynika z prawa zachowania oraz z przyjętego przybliżenia, że strumień tlenu spełnia pierwsze prawem Ficka (proporcjonalność do gradientu stężenia)

$$\mathbf{J}_{O_2} = -D_{O_2} \nabla c_{O_2} \,, \tag{5.50}$$

gdzie c_{o_2} jest stężeniem tlenu w betonie (mol/m³), D_{o_2} jest współczynnikiem dyfuzji tlenu (m²/s), a J_{o_2} to wektor strumienia tlenu (mol/(m²·s)). Z ogólnych rozważań w rozdziale wprowadzającym wiemy, że prawo zachowania dowolnego składnika *i* jest opisane równaniem różniczkowym

$$\frac{\partial c_i}{\partial t} + \operatorname{div} \mathbf{J}_i = \mathbf{R}_i, \qquad (5.51)$$

w którym $c_i = c_i(x,y,z,t)$ jest stężeniem składnika *i*-tego w dowolnym punkcie (*x*,*y*,*z*) oraz chwili *t*, a R_i oznacza człon reakcyjny (sumaryczna reakcja, w której składnik *i*-ty bierze udział). Jeżeli tlen nie reaguje w objętości betonu (a tylko na brzegu w obszarach anodowych), to $R_{o_2} = 0$. Zatem wstawiając (5.50) do (5.51) otrzymujemy

$$\frac{\partial c_{0_2}}{\partial t} + \operatorname{div} \mathbf{J}_{0_2} = \mathbf{0}, \quad \frac{\partial c_{0_2}}{\partial t} + \operatorname{div} (-D_{0_2} \nabla c_{0_2}) = \mathbf{0}, \quad \frac{\partial c_{0_2}}{\partial t} - D_{0_2} \operatorname{div} (\nabla c_{0_2}) = \mathbf{0} \Rightarrow \quad \frac{\partial c_{0_2}}{\partial t} = D_{0_2} \Delta c_{0_2}, \quad (5.52)$$

¹² W przypadku, gdy nie występują zmienne pola elektro-magnetyczne natężenie pola elektrycznego jest zachowawcze. Oznacza to, że może być wyrażone jako gradient pewnej funkcji skalarnej. Znak minus wynika z historycznej konwencji. W naszym przypadku rozważamy model, w którym mogą się pojawić zależne od czasu pola – jednak efekty te dla typowych sytuacji korozji w betonie nie tworzą na tyle silnych pól magnetycznych, aby zależność **E** = $-\nabla \phi$ nie była uprawniona. Należy jednak pamiętać, że nie jest ona uniwersalnie prawdziwa w elektrodynamice – zachodzi natomiast w elektrostatyce.

gdzie wykorzystaliśmy fakt, że współczynnik dyfuzji jest stały, $D_{O_2} = const$, oraz div $(\nabla c) = \Delta c$. Ostatecznie mamy równanie na dyfuzję tlenu

$$\frac{\partial c_{\mathrm{O}_2}}{\partial t} = D_{\mathrm{O}_2} \Delta c_{\mathrm{O}_2}.$$
(5.53)

Mamy zatem dwie niewiadome funkcje położenia i czasu: potencjał elektryczny oraz stężenie tlenu:

$$\varphi(x, y, z, t), c_{0}(x, y, z, t),$$
 (5.54)

które muszą spełniać wewnątrz obszaru betonu równania

$$\Delta \varphi = \mathbf{0}, \quad \frac{\partial c_{\mathbf{0}_2}}{\partial t} = D_{\mathbf{0}_2} \Delta c_{\mathbf{0}_2}. \tag{5.55}$$

W rozważanym modelu, który doprowadził do równań (5.55) wydaje się, że nie ma sprzężenia pomiędzy φ i c_{o_2} , gdyż faktycznie oba równania są niezależne. Okazuje się jednak, że sprzężenie występuje, ale poprzez warunki brzegowe, gdzie potencjał oraz stężenie tlenu oddziałują na siebie. Jeżeli nasz model rozbudujemy włączając do niego na przykład transport jonów Fe²⁺ i OH⁻, to wtedy sprzężenie będzie jeszcze wyraźniejsze, gdyż na transport tych jonów oprócz dyfuzji będzie miał jeszcze wpływ potencjał elektryczny (a dokładniej jego gradient, - $\nabla \varphi$). Równanie na transport kationów Fe²⁺ będzie mieć wtedy postać

$$\frac{\partial c_{Fe^{2+}}}{\partial t} = D_{Fe^{2+}} \Delta c_{Fe^{2+}} + 2D_{Fe^{2+}} \frac{F}{RT} \operatorname{div}(c_{Fe^{2+}} \nabla \varphi),$$
(5.56)

gdzie drugi składni po prawej stronie tego równania związany jest z ruchem jonów w polu elektrycznym (w elektrochemii taki ruch nazywany jest *migracją jonów*). Jednak w tej wersji projektu nie będziemy uwzględniali transportu jonów oraz migracji w polu elektrycznym.

Warunki brzegowe. Każdy model procesu fizycznego zachodzącego w jakimś obszarze Ω przestrzeni musi uwzględniać zjawiska zachodzące na brzegu tego obszaru $\partial \Omega$.¹³ W naszym przypadku kluczowe są warunki brzegowe w obszarze anodowym, gdzie zachodzi reakcja utleniania żelaza (5.41), oraz w obszarze katodowym, gdzie zachodzi reakcja redukcji tlenu (5.42). Jak wiemy z elektrochemii procesów elektrodowych, dla każdej reakcji przeniesienia ładunku przez granicę faz elektroda/elektrolit w stanie równowagi ustala się pewien potencjał charakterystyczny dla tej reakcji zwany *potencjałem równowagowym*. Jest on mierzony względem wybranej elektrody odniesienia, na przykład standardowej elektrody wodorowej (SHE, ang. *Standard Hydrogen Electrode*) i jest funkcją stężenia reagentów oraz temperatury. Na przykład dla reakcji redoks na obojętnej elektrodzie (platyna, grafit)

$$Fe^{3+} + e^- \rightleftharpoons Fe^{2+}$$
 (5.57)

w roztworze wodnym jonów $Fe^{2+}(aq)$ i $Fe^{3+}(aq)^{14}$ zmierzony woltomierzem potencjał względem SHE, gdy składniki są w stanie standardowym (stężenia Fe^{2+} i Fe^{3+} są równe 1M)¹⁵ wyniesie +0,771 V.

¹³ Stosujemy tutaj standardowe oznaczenia używane w matematyce. Jeżeli A $\subseteq \mathbb{R}^n$ tzn. A jest podzbiorem *n*wymiarowej przestrzeni euklidesowej \mathbb{R}^n , to brzeg tego obszaru oznaczany jest symbolem ∂A . Czasami spotyka się oznaczenie bd(A) od angielskiego słowa *boundary*.

¹⁴ Na przykład w czystej (dejonizowanej) wodzie rozpuszczamy azotan żelaza(II) i azotan żelaza(III) czyli sole Fe(NO₃)₂ i Fe(NO₃)₃.

¹⁵ Jest to nieco bardziej skomplikowane – należy posługiwać się tzw. aktywnościami termodynamicznymi jonów,

Potencjał taki oznaczamy symbolem E^{\ominus} lub E° . Mamy zatem $E^{\circ}_{Fe^{2+}/Fe^{3+}} = +0,771$ V. Jeżeli reagenty nie są w stanie standardowym, to z termodynamiki można wyprowadzić *wzór Nernsta*:

$$E_{Fe^{2^{+}}/Fe^{3^{+}}} = E_{Fe^{2^{+}}/Fe^{3^{+}}}^{O} + \frac{RT}{F} \ln \frac{[Fe^{3^{+}}]}{[Fe^{2^{+}}]},$$
(5.58)

gdzie [...] oznacza stężenie molowe wyrażone w mol/dm³ (znów – ściślej należałoby w tym wzorze użyć aktywności chemicznych). Jeżeli wzór Nernsta zapiszemy przy pomocy logarytmu o podstawie 10, to przyjmie on postać

$$E_{Fe^{2+}/Fe^{3+}} = E_{Fe^{2+}/Fe^{3+}}^{O} + \frac{2,303RT}{F} \log \frac{[Fe^{3+}]}{[Fe^{2+}]}.$$
(5.59)

Dla reakcji utleniania żelaza (5.41) potencjał standardowy $E_{Fe/Fe^{2+}}^{O} = -0,44$ V, a wzór Nernsta przyjmuje postać $E_{Fe/Fe^{2+}} = E_{Fe/Fe^{2+}}^{O} - \frac{2,303RT}{F}$ log[Fe²⁺]. Ponieważ dla T=293 K wartość wyrażenia $\frac{2,303RT}{F} = 0,059159$ V ≈ 59 mV, zatem 10-krotne zwiększenie lub zmniejszenie stężenia Fe²⁺ powoduje przesunięcie potencjału elektrody tylko o 59 mV.

To co jednak jest istotne w prezentowanym modelu to zależność pomiędzy szybkością reakcji elektrodowych (5.41) i (5.42) a potencjałem elektrody w danych warunkach. Inaczej mówiąc interesuje nas jak potencjał elektrody jest powiązany z gęstością prądu na elektrodzie? Odpowiedzią na to pytanie jest ważna zależność dla kinetyki procesów elektrodowych – *równanie Butlera–Volmera* (w literaturze występuje ono w kilku wariantach). "Siłą" napędową takiej reakcji jest tzw. *nadpotencjał elektrody* $\eta_s = \varphi - E_{eq}$, który jest różnicą pomiędzy potencjałem elektrody w danym punkcie a potencjałem równowagowym E_{eq} . Potencjał równowagowy jest potencjałem elektrody, przy którym nie płynie przez nią netto żaden prąd. W praktyce zależy on też od stężeń składników w pobliżu elektrody, ale w przybliżeniu można go utożsamić ze standardowym potencjałem równowagowym dla danej reakcji redoks, na przykład $E_{Fe/Fe^{2+}}^{O}$ dla reakcji utleniania Fe \rightarrow Fe²⁺+2e⁻ równanie Butlera–Volmera ma postać

$$j = j^{0} \left(e^{\frac{\alpha_{o}F}{RT}\eta_{s}} - e^{-\frac{\alpha_{c}F}{RT}\eta_{c}} \right),$$
(5.60)

gdzie $j^0 > 0$ jest tzw. gęstością prądu wymiany (A/m²), który charakteryzuje daną reakcję i materiał elektrody (parametr znajdowany empirycznie), α_a , $\alpha_c > 0$ to współczynniki przeniesienia ładunku, anodowy i katodowy, odpowiednio. Jak widać, równanie (5.60) składa się z dwóch części: prądu anodowego, $j^0 e^{\frac{\alpha_c F}{RT}\eta_s}$, oraz katodowego, $-j^0 e^{-\frac{\alpha_c F}{RT}\eta_c}$.¹⁶ W wielu sytuacjach jednak dominuje tylko jeden składnik, i tak dla reakcji utleniania żelaza wystarczy przyjąć tylko część anodową

$$j_a = j_a^0 e^{\frac{\alpha_a F}{RT} \eta_s}$$
, (5.61)

 a_i . W pierwszym przybliżeniu można przyjąć, że $a_i \approx c_i$.

¹⁶ Zauważmy, że prąd anodowy jest dodatni, a katodowy – ujemny. Jest to obecnie powszechnie przyjęta konwencja w elektrochemii (choć nie zawsze stosowana, dlatego przy korzystaniu z różnych opracowań należy zawsze upewnić się co do używanej konwencji).

gdzie dodano w zapisie indeks "*a*", żeby podkreślić, że dana reakcja jest w obszarze anodowym. W takiej postaci zależność (5.61) nazywa się *wzorem Tafela*. W przypadku zastosowań do procesów korozji zbrojenia tradycyjnie wzór Tafela zapisuje się z 10 jako podstawą zamiast stałej Eulera *e*, a w wykładniku potęgi wprowadza się tzw. współczynnik Tafela β_a :

$$j_{a} = j_{a}^{0} \cdot 10^{\eta_{s}/\beta_{a}}.$$
(5.62)

Z porównania wzorów (5.61) i (5.62) widzimy, że są one równoważne gdy $\beta_a = \frac{RT}{\alpha_a F \log(e)} \simeq \frac{RT}{2,302\alpha_a F}$.

J

W przypadku reakcji utleniania tlenu (5.42), dla której $E_{OH^{-}/O_{2}}^{O}$ = +0,401 V, równanie Tafela ma postać

$$j_{c} = -j_{c}^{0} \cdot 10^{-\eta_{s}/\beta_{c}}, \qquad (5.63)$$

gdzie β_c to współczynnik Tafela reakcji redukcji tlenu, a j_c^0 to gęstość prądu wymiany tej reakcji. Należy podkreślić, że zależności (5.62) i (5.63) zachodzą w różnych miejscach zbrojenia (anodowym i katodowym). Wyrażenie te są podstawą do zdefiniowania warunków brzegowych w naszym modelu.

Przypadek 1 (*bez prądu granicznego*). Wzory Tafela podają wykładniczą zależność gęstości prądu na elektrodzie od wartości nadpotencjału η_s . W praktyce jednak taka zależność nie może być zrealizowana w dowolnym zakresie nadpotencjałów, gdyż przy dużych wartościach gęstości prądu mogą się ujawnić dodatkowe czynniki, które ograniczają szybkość przepływu ładunku. Na przykład dla redukcji tlenu jest konieczne, aby tlen znajdował się na powierzchni gdzie będzie zachodzić reakcja $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$. Tlen jest transportowany z otoczenia konstrukcji żelbetowej przez beton do powierzchni pręta, a to wymaga czasu. Jeżeli wspomniana reakcja zachodzi zbyt szybko, to zaczyna spadać stężenie tlenu w obszarze katodowym (nawet do zera) i pojawia się naturalne ograniczenie – reakcja (a zatem gęstość prądu) też spada do zera. A zatem w danym układzie występuje tzw. maksymalny *prąd graniczny*. Oczywiście wyrażenie Tafela (5.63) nie zawiera takiego ograniczenia (wartość bezwzględna prądu katodowego, $|j_c|=j_c^0 \cdot 10^{\eta_c/\beta_c}$, teoretycznie może być dowolnie duża, gdy $\eta_s \rightarrow \infty$). W tym podpunkcie nie rozważamy modelu z prądem granicznym (to będzie w **Przypadku 2**). Ponieważ gęstość prądu w betonie dana jest wzorem (5.46), a w obszarze anodowym lub katodowym wzorami (5.62) i (5.63), to jasne jest, że oba te wyrażenie muszą być zgodne na odpowiednich powierzchni pręta:

$$-\mathbf{n} \cdot \mathbf{j} = j_a$$
 (obszar anodowy), $-\mathbf{n} \cdot \mathbf{j} = j_c$ (obszar katodowy), (5.64)

gdzie $\mathbf{j} = -\frac{1}{\rho} \nabla \varphi$, a *n* oznacza wektor normalny na brzegu (por. Rys. 5-9). Użycie we wzorach (5.64) wektora normalnego jest konieczne, gdyż wyrażenie *n*·j przedstawia składową normalną (prostopadłą) do powierzchni pręta, a tylko ta część wektora gęstości prądu z betonu uczestniczy w reakcji elektrodowej. Znak minus w tych wyrażeniach jest związany z konwencją zapisu takich wyrażeń w środowisku COMSOL. Przypomnijmy, że wektor normalny *n* jest skierowany na zewnątrz obszaru w którym wykonujemy symulacje (w tym przypadku obszarem jest beton, a brzegiem powierzchnia zbrojenia) – Rys. 5-9.

Rys. 5-9 Ilustracja jak wektor normalny jest określony na brzegu obszaru symulacji. Jest to wektor prostopadły do powierzchni w danym punkcie, skierowany na zewnątrz, o długości jednostkowej, |n|=1.

W obszarach powierzchni pręta czy zewnętrznego brzegu otuliny betonowej, gdzie prąd przez brzeg nie przepływa naturalnym warunkiem brzegowym jest izolacja, czyli

$$-\mathbf{n} \cdot \mathbf{j} = 0$$
 (izolacja elektryczna, prądnie płynie przez brzeg). (5.65)

Warunki brzegowe dla tlenu są następujące. Na tych częściach brzegu betonu, który kontaktuje się bezpośrednio z otaczająca atmosferą, można przyjąć że stężenie tlenu jest stałe i jest równe znanemu stężeniu tlenu w atmosferze ($c_{0_1,zew}$):

$$c_{0_2} = c_{0_2, zew}$$
 (obszary kontaktu betonu z atmosferą). (5.66)

W obszarach katodowych na pręcie (redukcja tlenu wg równania (5.42)) sytuacja jest taka, że na każdy mol zużytego tlenu pojawiają się cztery elektrony przechodzące do metalu. Zatem mamy zależność pomiędzy składową normalną strumienia tlenu na obszarze katodowym ($-n \cdot J_{O_2}$) a gęstością prądu katodowego (j_c), która jest niczym innym jak odpowiednio zapisanym prawem zachowania ładunku:

$$\mathbf{n} \cdot \mathbf{J}_{O_2} = \frac{1}{4F} j_c$$
 (obszar katodowy). (5.67)

Stała Faradaya (*F*) pojawia się w powyższym wzorze dlatego, że strumień tlenu jest zdefiniowany w naszym modelu jako liczba moli na jednostkę powierzchni i czasu. Powyższe równanie jest w zasadzie szczególnym przypadkiem drugiego prawa Faradaya. Ponadto warto podkreślić, że relacja (5.67) jest niezależna od tego jakim równaniem konstytutywnym zostanie opisany strumień tlenu. W naszym modelu jest to I prawo Ficka (5.50), ale nie jest to istotne. Istotna jest tylko postać i stechiometria równania chemicznego redukcji tlenu ($O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$).

Na tych częściach zbrojenia gdzie nie zachodzi redukcja tlenu warunki są takie, że tlen jest po prostu blokowany, zatem

$$\boldsymbol{n} \cdot \boldsymbol{J}_{0,} = \boldsymbol{0}, \tag{5.68}$$

czyli składowa strumienia tlenu prostopadła do brzegu jest równa zero.

Przypadek 2 (*kinetyka redukcji tlenu z prądem granicznym*). Jak już wyjaśniono w opisie Przypadku 1 zależność Tafela dla prądu katodowego, (5.63), nie może być spełniona w dowolnym zakresie prądów i potencjałów – pojawia się naturalne ograniczenie wynikające z szybkości dostarczania tlenu do reakcji $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$. Takie ograniczenie nie występuje w tym wzorze. Aby uwzględnić takie

ograniczenie w literaturze często podaje się następującą relację pomiędzy gęstością prądu katodowego a nadpotencjałem¹⁷

$$\eta_{s} = \beta_{c} \log \frac{j_{c}}{j_{c}^{0}} - \frac{2.303RT}{zF} \log \frac{j_{lim}}{j_{lim} - j_{c}},$$
(5.69)

gdzie nadpotencjał $\eta_s = \varphi - E_{OH^-/O_2}^{O}$, z = 4 to liczba elektronów biorących udział w reakcji, a *j*_{lim} to prąd graniczny. W obliczeniach przyjmiemy $j_{lim} = 0,30152 \text{ A/m}^2$. Tutaj napotykamy pewną trudność z wykorzystaniem wzoru (5.69), gdyż w projekcie COMSOLa będziemy potrzebować zależności j_c od η_s , a nie zależności $\eta_s = f(j_c)$ tak, jak jest to w tym wzorze. Niestety nie da się analitycznym wyliczyć j_c z formuły (5.69), ale można to zrobić numerycznie i zwyczajnie stablicować funkcję $j_c = g(\eta_s)$. Jest to stosunkowo proste zagadnienie, wystarczy tylko wstawić do (5.69) wartości liczbowe parametrów β_c , j_c^0 , *F*, *R*, *T*, *z*, j_{lim} . Wygodnie jest też wprowadzić wielkość $\overline{j} = j_c / j_{lim}$:

$$\eta_{s} = \beta_{c} \log\left(\frac{j_{lim}}{j_{c}^{0}} \frac{j_{c}^{0}}{j_{lim}}\right) - \frac{2.303RT}{zF} \log\frac{1}{1 - j_{c} / j_{lim}},$$
(5.70)

co po wstawieniu wartości liczbowych daje równanie

$$\gamma_{s} = 0,16\log(48243 \cdot \overline{j}) + 0,01479\log(1 - \overline{j}).$$
(5.71)

Używając metody Newtona można teraz dla pewnego zakresu nadpotencjałów rozwiązać numerycznie równanie (5.71) otrzymując stablicowaną zależność $\overline{i_c} = g(\eta_s)$, skąd $j_c = j_{lim} \cdot g(\eta_s)$. W rozważanym modelu wystarczający jest zakres $\eta_s \in [-0, 21 \text{ V}; 0, 866 \text{ V}]$.

Tak więc jedyną zmianą w porównaniu z **Przypadkiem 1** będzie użycie zależności $-\mathbf{n} \cdot \mathbf{j} = j_{lim} g(\eta_s)$ zamiast $-\mathbf{n} \cdot \mathbf{j} = j_c^0 \cdot 10^{\eta_s/\beta_c}$ w obszarach katodowych na powierzchni pręta. Pozostałe elementy modelu nie ulegną zmianie.

Podsumowanie matematycznych równań modelu:

Strumień tlenu: $\mathbf{J}_{O_2} = -D_{O_2} \nabla c_{O_2}$.

Prawo zachowania dla tlenu: $\frac{\partial c_{O_2}}{\partial t} + \nabla \cdot \mathbf{J}_{O_2} = \mathbf{0}.$

Prawo Ohma (dla gęstości prądu): $\mathbf{j} = -\frac{1}{\rho} \nabla \varphi$.

Równanie na potencjał (r. Laplace'a): $\nabla^2 \varphi = 0$.

Warunki brzegowe dla tlenu:

$$-\mathbf{n} \cdot \mathbf{J}_{O_2} = \frac{1}{4F} i_c$$
 (katoda), $-\mathbf{n} \cdot \mathbf{J}_{O_2} = 0$ (reszta pręta), $c_{O_2} = c_{O_2, zew}$ (zew. brzeg betonu)

¹⁷ Na przykład O. Burkan Isgor, A. Ghani Razaqpur, "Modeling steel corrosion in concrete structures", *Materials and Structures* (2006) 39:291–302.

Warunki brzegowe dla gęstości prądu:

$$-\mathbf{n} \cdot \mathbf{j} = j_a$$
 (anoda), $-\mathbf{n} \cdot \mathbf{j} = j_c$ (katoda), $-\mathbf{n} \cdot \mathbf{j} = 0$ (reszta brzegu),

gdzie $j_a = j_a^0 \cdot 10^{\eta_s/\beta_a}$, $j_c = -j_c^0 \cdot 10^{-\eta_s/\beta_c}$ (przypadek 1), $j_c = j_{lim} \cdot g(\eta_s)$ (przypadek 2).

Rozwiązanie:

- 2. Uruchom program *COMSOL Multiphysics* i wybierz *Model Wizard*. Jako *Space Dimension* wybierz 3D.
- W oknie Select Physics wybierz interfejs General Form PDE (g). Zmień domyślną nazwę zmiennej na cO2 oraz wybierz jednostki Concentration (mol/m^3) oraz Reaction rate (mol/(m^3*s)).

Select Physics	Review Physics Interface
Search	General Form PDE (g) Dependent Variables Field name: Number of dependent variables: Dependent variables: cO2 + ==
Δυ General Form PDE (g)	

4. Następnie dodaj interfejs *Poisson's Equation (poeq)*. Zmień domyślną nazwę zmiennej na **phi**, oraz wybierz jednostki *Electrolyte potential (V)* oraz *Current source (A/m^3)*.

Select Physics	Review Physics Interface
Search	Poisson's Equation (poeq)
 ▲ Ceneral Form PDE (g) ▲ Ceneral Form PDE (g) ▲ Coefficient Form PDE (c) ▲ Laminar Flow (spf) ▲ AC/DC ▲ Ac/DC ▲ Coefficient Form PDE (c) ▲ Latt Transfer ➡ Fluid Flow ▲ Latt Transfer ▲ DPDE Interfaces ▲ Coefficient Form PDE (c) ▲ U Able Matematics ▲ Au PDE Interfaces ▲ Coefficient Form PDE (c) ▲ U wave Form PDE (c) ▲ U wave Form PDE (c) ▲ U wave Form PDE (w) ④ PDE, Boundary Elements (pdebe) ▲ Lu Lower Dimensions ♥ Classical PDEs ♥ Zelaplace Equation (lpeq) ♥ Zelaplace Convection-Diffusion Equation (scdeq) ♥ Zelaplace Mathics ♥ Wave Equation (lpeq) ♥ Zelaplace Mathics ♥ Deformed Mesh ▲ Add Added physics interfaces: 	Dependent Variables Dependent variable: Units Dependent variable quantity Electrolyte potential (V) Source term quantity Current source (A/m^3) •
Δυ General Form PDE (g) V ² Poisson's Equation (poeq)	

- 5. W sekcji Study wybierz Stationary i zatwierdź klikając Done.
- 6. Zdefiniuj parametry występujące w modelu, wprowadzając do tabeli *Parameters*, tak jak na poniższej grafice.

Torozja 3D.mph (root)					
Global Definitions	Parameters				
Materials	** Name	Expression	Value	Description	
Component 1 (comp 1)	а	40[mm]	0.04 m		
Definitions	b	300[mm]-a	0.26 m		
Geometry 1	c	200[mm]	0.2 m		
Materials	н	100[mm]	0.1 m		
Concern Form PDE (g)	r	7[mm]	0.007 m		
Taro Elux 1	E0a	-0.78[V]	-0.78 V		
Ditial Valuer 1	E0c	0.16[V]	0.16 V		
$\sqrt{\nabla^2}$ Poisson's Equation (norg)	beta_a	0.06[V]	0.06 V		
Poisson's Equation 1	beta_c	0.16[V]	0.16 V		
Zero Flux 1	i0a	187.5E-6[A/m^2]	1.875E-4 A/m ²		
Initial Values 1	i0c	6.25E-6[A/m^2]	6.25E-6 A/m ²		
A Mesh 1	Т	298[K]	298 K		
Results	rho	140[ohm*m]	140 Ω·m		
	D_02	2.5E-9[m^2/s]	2.5E-9 m ² /s		
	c_ext	0.26563[mol/m^3]	0.26563 mol/m ³		
	c0	0.15625[mol/m^3]	0.15625 mol/m ³		
	↑↓ = Name: Expression: Description:	x 🖌 🔛 🛄 🗐 🔹			

7. Domena obliczeniowa w naszym modelu składa się z powierzchni pręta zanurzonego betonowej kształtce. Jako pierwszą utwórz geometrię pręta. Prawym przyciskiem kliknij *Geometry 1* i z listy wybierz *Cylinder*. W polu *Radius* wprowadź r a w polu *Height* b. Zmień *Axis type* na *x-axis*. Kliknij *Build Selected*.

Model Builder ← → ↑ ↓ ▼ • Ⅲ Ⅲ •	Settings Cylinder	Graphics Q Q A 今 形 小・ビビビ 日日 和 巻 単 日日 秋 巻 単 原 新 ※ 目 気 う 名 目 な 会 曲
	Build Selected Build All Objects Label: Cylinder 1	a
Component 1 (comp1)	▼ Object Type	
 Definitions Boundary System 1 (sys1) 	Type: Solid *	5 ×10 ⁻³ m
View 1	Size and Shape	5 s
Form Union (fin)	Radius: r m	0 ×10
Materials	Height: b m	
General Form PDE 1	▼ Position	
Zero Flux 1 Initial Values 1	x: 0 m	
Zero Flux 2	y: 0 m	0.2
Poisson's Equation (poeq)	z 0 m	
Erro Flux 1 Initial Values 1	▼ Axis	
A Mesh 1	Axis type: x-axis	
	 Rotation Angle 	0.1 m
	Rotation: 0 deg	
	▼ Coordinate System	
	Work plane: xy-plane •	
	b Layers	
	 Selections of Resulting Entities 	y x
	Contribute to: None • New	
	Resulting objects selection	

 Utwórz drugi segment pręta, dodając nowy obiekt *Cylinder* o parametrach *Radius=r*, *Height=* 2*a i *Position x=* b. Utwórz trzeci segment pręta, dodając nowy obiekt *Cylinder* o parametrach *Radius=r*, *Height=* b i *Position x=* b+2*a. Kliknij *Build All*. Powinieneś otrzymać geometrię pręta składającą się z trzech segmentów jak na grafice poniżej.

Model Builder ← → ↑ ↓ ∓ ~ It III II ▲ @ Koroja 30.mph (root) ▲ @ Gobal Definitions P Parameters	Settings via Cylinder B Build Setted v B Build All Objects Label: Cylinder 3	・ Graphics Q.Q.Q.今田(小・田田田) ●日日本(西田田市) NET 2 NE
## Materials #@ Component 1 (comp t) # Definitions @ Weine 1 @ Weine 1 @ View 1 @ View 1	Object Type Type: Solid v Size and Shape	×10 ⁹ m
Cylinder 1 (o/f) Cylinder 2 (o/2) Cylinder 2 (o/2) Form Union (fin) St Materials	Radius: r Height: b r Position	×10 0.6
▲ Δω General Form PDE (g) and General Form PDE 1 and Zero Flux 1 and Tero Flux 1 and Zero Flux 2 and Zero Flux 2 and Zero Flux 2 and Zero Flux 2	x: 2*3*5 y: 0 z: 0 m	5.0.4
Poisson's Equation 1 Zero Flux 1 Poisson's Equation 1 Zero Flux 1 Meth 1 Meth 1	Axis Axis type: X-axis	0.2 m
	Rotation: 0 deg Coordinate System Work plane: xy-plane •	•
	Layers Version of Resulting Entities Contribute to: None New New Resulting biglets selection	y 📩 x

9. Dla ułatwienia definiowania warunków brzegowych zdefiniuj selekcje (*Selections*). Kliknij prawym przyciskiem *Definitions* i z listy wybierz *Selections>Explicit*. Jako *Geometric entity level* wybierz *Boundary* i zaznacz boczne powierzchnie dwóch większych walców. Zmień nazwę selekcji na Katoda. Podobnie utwórz drugą selekcję, która będzie składała się z bocznych powierzchni mniejszego walca i nazwij ją Anoda.

Model Builder - ■ ← → ↑ ↓ ≭ ~ □↑ □↓ □ + ✓ & Korojs 30.mph (root) ● Global Definitions ● Global Definitions By Resenters By Matchilds	Settings Exploit ubdit Katada • lopu Entities	· Graphics Q.Q.Q.今田レビーを開発した後に登場回避した日に、1980年19日 3
▲ (Component (torne)) ▲ (Component (torne)) ▲ Andel → (Context) ← (Context)	Geometric weby Jone L Boundary	31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
By Teaching By Teaching Concern Form PC (1) By Concern Form PC (1) By Concern Form PC (1) By Concern Form 1 By Concern F	Group Continuou Largert Control Contr	0.4 0.2 y 1. x

Wróć do tworzenia domeny obliczeniowej. Prawym przyciskiem kliknij *Geometry* i wybierz *Block*. W odpowiednie pola wpisz: *Width* = 2*(a+b), *Depth* = c, *Height* = 2*(H+r). Dostosuj jego położenie wprowadzając w sekcji *Positions*: x = 0, y = -c/2 oraz z = -H-r.

Model Builder - 0 ← → ↑ ↓ ∓ ~ □1 □⊥ □ · - ▲ ③ Korojs 3D.mph (root) - ▲ ④ Korojs 3D.mph (root) - ● Global Definitions - ● Prementers -	Settings - 1 Book Bould Selected - Book All Objects Label: Book 1	
Materials Component 1 (comp 1) Enfinitions Katoda	▼ Object Type Type Solid ▼	0.05
 Acceded Booschaft System 1 (syst) Booschaft System 1 (syst) Booschaft System 1 (syst) Gendert System 1 (syst) Gendert System 1 (syst) Gendert System 1 (system 1 (syst)) Booschaft System 1 (system 1 (sys	▼ Size and Shape Vide: >>>>>>>>>>>>>>>>>>>>>>>>>>>>	

11. W ostatnim kroku odejmij pręty od bloku betonu. Prawym przyciskiem kliknij *Geometry 1* i z listy wybierz *Booleans and Partitions>Difference*. W oknie *Objects to add* wybierz prostopadłościan (*Block*). Aby ułatwić wybór *Objects to subtract*, w górnej części okna graficznego kliknij opcję *Click and Hide* (przekreślona ikona oka) i ukryj prostopadłościan. Po wybraniu prętów, przywróć widoczność wszystkich elementów za pomocą narzędzia *Reset Hiding* (zakręcona strzałka).

Zdefiniuj równania modelu korozji. Jako pierwsze zaimplementuj równanie dyfuzji tlenu. W węźle *General Form PDE 1* w polach Conservative Flux wprowadź odpowiednio: -D_O2*cO2x, -D_O2*cO2y oraz -D_O2*cO2z. Dodatkowo wyzeruj człon źródłowy *Source Term*.

 Zdefiniuj warunki brzegowe na powierzchni betonowej kształtki. Dodaj Dirichlet Boundary Condition I przypisz go do wszystkich sześciu zewnętrznych ścian prostopadłościanu. W pole Prescribed Value of cO2 wprowadź c_ext.

Zdefiniuj strumienie na powierzchni katody. Wybierz Flux/Source i skorzystaj z wcześniej zdefiniowanej selekcji Katoda. W polu Boundary Flux/Source wprowadź (1/(4*F_const))*i0c*10^(-(phi-E0c) /beta_c).

15. Zdefiniuj równanie na potencjał. W węźle *Poisson Equation 1 rozwiń Diffusion Coefficient* i wprowadź w pole tekstowe *c* **1/rho**. Rozwiń *Source Term* a w pole tekstowe *f* wpisz **0**.

Zdefiniuj strumienie na powierzchni pręta dla selekcji Anoda. Dodaj *Flux/Source*i przypisz go do selekcji *Anoda*. Rozwiń *Boundary Flux/Source* i w pole tekstowe *g* wprowadź -i0a*10^((phi-E0a)/beta_a).

17. W podobny sposób zdefiniuj strumienie na powierzchni pręta dla selekcji Katoda. Dodaj *Flux/Source*i przypisz go do selekcji *Katoda*. Rozwiń *Boundary Flux/Source* i w pole tekstowe g wprowadź i0c*10^(-(phi-E0c)/beta_c).

 Utwórz siatkę numeryczną. Wybierz User-controlled mesh i w sekcji Element size parameters wprowadź w pola tekstowe: Maximum element size – 0.15, Minimum element size – 4.5E-3, Maximum element growth rate – 1.35, Curvature factor – 0.3 oraz Resolution of narrow regions – 0.85.

Model Builder	Settings **	Graphics Convergence Plot 1
	Size	o o o o o o o o o o o o o o o o o o o
	🖲 Build Selected 🗱 Build All Labek Size	3
A Component 1 (comp 7)	Element Size	0.1 m
Z ■ Definitions % Katoda % Anoda De Boundary System 1 (syst) b UZ View 1	Celibrate for: General physics	
Geometry 1 Cylinder 1 (cyl1) Cylinder 2 (cyl2) Cylinder 2 (cyl2) Cylinder 2 (cyl2)	Custom Element Size Parameters	0.05
Block 1 (6/6/1)	Maximum element size: 0.15 m Minimum element size:	o m
St Materials ▲ Δv General Form PDE (g) General Form PDE 1 Subject Start 1 Entrol House 1 Entrol House 1	4.5E-3 m Maximum element growth rate: 1.35	4.65 0.1
Zers Flux 2 Dicktet Boundery Condition 1 Flux Source 1 2 Poisson's Equation (joce) 2 Poisson's Equation 1 2 Zero Flux 1 1 minut Values 1	Constant effects 0.3 Resolution of namour regions: 0.35	0.4
Multiple Multiple		y

19. Uruchom symulację. Po zakończeniu wygeneruj wykresy 3D pokazujące zmienne **cO2** i **phi** na powierzchni (*Surface plot*).

Zadanie 1. Na podstawie publikacji: Szyszkiewicz-Warzecha, K.; Wilczek-Vera, G.; Lewenstam, A.; Górska, A.; Tarasiuk, J.; Filipek, R. The Influence of Chemical Activity Models on the Description of Ion Transport through Micro-Structured Cementitious Materials. *Materials* **2023**, *16*, 1116. <u>https://doi.org/10.3390/ma16031116</u> przygotuj projekt w COMSOLu, który wyliczy rozkłady stężeń jonów w próbce betonowej. W modelu uwzględnij obecność kruszywa oraz wpływ aktywności na transport jonów. Potrzebne dane odczytaj z publikacji. Uzyskane wyniki porównaj z rysunkami 20 i 21 w publikacji.

Zadanie 2. Na podstawie publikacji: Szyszkiewicz-Warzecha, K.; Stec, J.; Deja, J.; Łagosz, A.; Górska, A.; Kutukova, K.; Zschech, E.; Filipek, R. 3D Multi-Ion Corrosion Model in Hierarchically Structured Cementitious Materials Obtained from Nano-XCT Data. *Materials* **2023**, *16*, 5094. https://doi.org/10.3390/ma16145094 przygotuj projekt w COMSOLu, który wyliczy zależność od czasu rozkładów stężeń jonów i potencjału w próbce cementowej oraz prądy anodowy i katodowy. W modelu uwzględnij obecność porów kapilarnych, porów żelowych i kruszywa w materiale cementowym, różne współczynniki dyfuzji jonów w porach kapilarnych i żelowych oraz reakcję homogeniczną jonów żelaza z grupami hydroksylowymi. Potrzebne dane odczytaj z publikacji. Uzyskane wyniki porównaj z rysunkami 6, 7 i 8 w publikacji.

Bibliografia

- J. P. Broomfield, Corrosion of steel in concreto; Understunding, investigation and repair, Wyd.
 2, CRC Press, 2019.
- 2. L. Bertolini, B. Elsener, P. Pedeferri, E. Redaelli, R. Polder, Corrosion in concreto; Prevention, diagnosis, repair, Wyd. 2 rozszerzone, Wiley-VCH, 2013.
- 3. M. Raupach, B. Elsener, R. Polder, J. Mietz, Corrosion of reinforcement in concreto; Mechanisms, monitoring, inhibitors and rehabilitation techniques, CRC Press, 2007.

5.5. Limit detekcji elektrod jonoselektywnych

Wprowadzenie. Elektroda jonoselektywna (ISE – *ion selective electrode*) pozwala na zmierzenie stężenia (a dokładniej – aktywności) wybranego jonu w elektrolicie nawet w obecności innych jonów przeszkadzających (interferujących), na podstawie pomiaru potencjału elektrycznego. Jest to zatem czujnik potencjometryczny. Najważniejszą częścią takiego czujnika jest *membrana jonoselektywna* (Rys. 5-10). W zastosowaniach spotyka się m.in. ciekłe membrany zawierające obojętne lub obdarzone ładunkiem związki lipofilowe zdolne do odwracalnego wiązania jonów i transportu ich przez polimerową (np. PCW) matrycę membrany. Związki takie nazywamy *jonoforami*. Przykładem jonoforu jest cykliczny peptyd walinomycyna. Sól lipofilowa stabilizuje powstające kompleksy i skraca czas odpowiedzi czujnika. Ponadto, typowa membrana polimerowa zawiera około 65% wagowych plastyfikatora (rozpuszczalnika organicznego). Umożliwia on jednorodne rozprowadzenie jonoforu i soli lipofilowej, zmniejsza lepkość środowiska membrany i w konsekwencji zapewnia relatywnie wysoką ruchliwość składników membrany. Przykładami plastyfikatorów są DOS (pochodna kwasu sebacynowego COOH-(CH₂)₈-COOH) i o-NPOE (eter będący pochodną nitrobenzenu). Membrany takie można traktować jak fazy ciekłe, gdyż współczynniki dyfuzji małocząsteczkowych składników są rzędu 10⁻¹¹–10⁻¹⁰ m²/s w tych membranach.

Rys. 5-10 Schemat elektrody jonoselektywnej zanurzonej w badanym roztworze elektrolitu. W elektrolicie znajduje się m.in. jon, którego stężenie (aktywność) chcemy oznaczyć. Na membranie pojawia się mierzalny potencjał elektryczny, którego wartość pozwala oznaczyć jon. W roztworze mogą też występować jony przeszkadzające.

Modelowanie ewolucji potencjału oraz rozkładu stężeń w pseudo-ciekłej membranie może być dokonane w oparciu o model Nernsta–Plancka–Poissona (NPP) z odpowiednimi warunkami brzegowymi. Do ilustracji wybrano membranę jonoselektywną względem głównego jonu o wartościowości +2 w obecności przeszkadzającego (interferującego) jonu +1. Początkowe profile stężeń w otaczających roztworach ($c_{i,L}$, $c_{i,R}$) oraz w membranie ($c_{i,M}$), współczynniki dyfuzji oraz heterogeniczne stałe wymiany jonowej na obu brzegach membrany podane są w tabeli (Tab. 5-2).

Zakładamy, że warstwa membrany jest płaska i potencjał oraz stężenia w membranie zależą tylko od odległości od powierzchni granicznej. Potencjał elektryczny jest związany z dyfuzją i migracją jonów.

Prowadzi to do schematu jak na Rys. 5-11. Między dwoma roztworami powstaje różnicę potencjałów $\Delta \varphi = \varphi_R - \varphi_L$ gdzie φ_R i φ_L to potencjały roztworów odpowiednio po prawej i lewej stronie membrany.

Rys. 5-11 Schemat membrany jonoselektywnej znajdującej się pomiędzy roztworami o stężeniach odpowiednio $c_{i,L}$ po lewej i $c_{i,R}$ po prawej stronie membrany, i=1,...,r; r = liczba składników.

Membrana rozdzielająca oba roztwory jest na tyle porowata, aby przynajmniej niektóre składniki mogły wędrować przez membranę. W modelu membranę traktujemy jednak jako ośrodek ciągły. Wartości współczynników dyfuzji jonów w membranie są zazwyczaj mniejsze niż w wodzie, gdzie typowe wartości wynoszą 10⁻⁹ m²/s, a w membranie są rzędu 10⁻¹⁰–10⁻¹¹ m²/s.

Tab. 5-2 Dane do obliczeń: początkowe stężenia, współczynniki dyfuzji oraz heterogeniczne stałe szybkości (na podstawie W. Kucza *et al.* str. 418). Grubość membrany $d=10^{-4}$ m (0.1 mm).

Jon	<i>c_{i,L}</i> (mol/m ³)	$c_{i,M}$ (mol/m ³)	<i>c_{i,R}</i> (mol⋅m ⁻³)	D _i (m ² / s)	$\vec{k}_{i,L}$ (m / s)	k¯ _{i,L} (m / s)	$\vec{k}_{i,R}$ (m / s)	$\overline{k}_{i,R}$ (m / s)
I ²⁺	10 ⁻⁷ -10 ³	0.5	1000	10 ⁻¹¹	10 ⁻³	10 ⁻³	10 ⁻³	10 ⁻³
\mathbf{J}^+	150	0	0	10 ⁻¹¹	4.472·10 ⁻⁷	10 ⁻³	4.472·10 ⁻⁷	10 ⁻³
R	0	1	0	10-11	0	0	0	0

Prawa fizyczne. Zakładamy, że w układzie jest *r* składników (jonów). Podstawą do opisu rozważanego modelu jest *układ równań Nernsta–Plancka–Poissona*. Strumień Nernsta–Plancka ma postać: $J_i = -D_i \nabla c_i + u_i z_i c_i E$. Składa się on z dwóch część: dyfuzyjnej i migracyjnej. W wyrażeniu tym u_i oznacza ruchliwość jonu *i*, z_i to jego liczba ładunkowa, a E to natężenie pola elektrycznego. Wykorzystując *relację Einsteina–Smoluchowskiego*, wiążącą współczynnik dyfuzji z ruchliwością $u_i = FD_i / (RT)$, otrzymujemy następujące wyrażenie na strumień w jednym wymiarze (1D):

$$J_{i} = -D_{i} \frac{\partial c_{i}}{\partial x} + D_{i} \frac{z_{i}F}{RT} c_{i}E, \qquad (5.72)$$

gdzie R, T, F to odpowiednio uniwersalna stała gazowa, temperatura (K) oraz stała Faradaya.

Stężenia składników spełniają równania (prawo zachowania, por. (1.26) bez reakcji)

$$\frac{\partial c_i}{\partial t} + \operatorname{div} \mathbf{J}_i = 0 \quad (i = 1, \dots, r), \tag{5.73}$$

gdzie c_i jest stężeniem (mol/m²), a J_i jest strumieniem (mol/(s·m²), odpowiednio *i*-tego składnika. W przypadku jednowymiarowym (membrana utożsamiana z odcinkiem [0, *d*]) prawo zachowania (5.73) ma więc formę

$$\frac{\partial c_i}{\partial t}(x,t) + \frac{\partial J_i}{\partial x}(x,t) = 0 \quad \text{dla } x \in [0,d], \ t \ge 0, \ (i=1,\ldots,r).$$
(5.74)

Pole elektryczne jest powiązane z rozkładem ładunku prawem Gaussa¹⁸

$$\frac{\partial E}{\partial x}(x,t) = \frac{1}{\varepsilon} \rho(x,t) \qquad x \in [0,d], \ t \ge 0.$$
(5.75)

gdzie $\rho(x,t)$ to gęstość ładunku, $\varepsilon = \varepsilon_r \varepsilon_0$ to przenikalność elektryczna ośrodka.¹⁹ Ponieważ stężenia wyrazimy w mol/m³, to związek pomiędzy gęstością ładunku a stężeniami jonów jest następujący

$$\rho(x,t) = F \sum_{i=1}^{r} z_i c_i(x,t).$$
(5.76)

Warunki początkowe i brzegowe. Warunki początkowe określają stan układu w chwili początkowej, t = 0. W modelu dopuszcza się dowolne początkowe rozkłady stężeń składników, a natężenie pola elektrycznego będzie zerowe:

$$\begin{cases} c_i(x,0) = c_i^0(x) & (i = 1,...,r), \\ E(x,0) = 0. \end{cases}$$
(5.77)

W modelu przyjmiemy tzw. *warunki brzegowe Changa–Jaffé'go,* które określają szybkość przechodzenie jonów przez granicę faz elektrolit/membrana:

$$\begin{cases} J_{i}(0,t) = \vec{k}_{i,L} c_{i,L} - \vec{k}_{i,L} c_{i}(0,t), \\ J_{i}(d,t) = -\vec{k}_{i,R} c_{i,R} + \vec{k}_{i,R} c_{i}(d,t), \end{cases}$$
(5.78)

gdzie: $J_i(0,t)$, $J_i(d,t)$ to strumienie *i*-tego składnika na brzegu dla x = 0 oraz x = d; $c_i(0,t)$, $c_i(d,t)$ to stężenia na brzegu membrany (od wewnętrznej strony membrany), \vec{k}_i i \vec{k}_i to heterogeniczne stałe wymiany jonowej, $c_{i,L}$ i $c_{i,R}$ to stężenia jonów odpowiednio w części lewej i prawej.

Postać (5.75) równania na natężenie *E* nie zawsze jest używana do obliczeń. Z równań (5.74)–(5.76) można wyprowadzić (w jednym wymiarze) następujące równanie:

$$\varepsilon \frac{\partial E}{\partial t} = I(t) - F \sum_{i=1}^{r} z_i J_i, \qquad (5.79)$$

w którym I(t) jest prądem (dokładniej – gęstością prądu), który płynie przez membranę.

Niewiadome. Model pozwala obliczyć stężenia składników w membranie oraz natężenie (a w konsekwencji potencjał elektryczny):

$$c_i = c_i(x,t), \quad E = E(x,t) \quad dla \ x \in [0,d], \ t > 0, \ i = 1,...,r$$

¹⁸ W elektrostatyce *prawem Gaussa* nazywa się równanie div(**E**) = ρ/ε , gdzie **E** jest wektorem natężenia pola elektrycznego. W sytuacji gdy można zaniedbać efekty magnetyczne, pole elektryczne jest potencjalne, więc wyraża się przez potencjał elektryczny: $\mathbf{E} = -\nabla \varphi$. Wtedy prawo Gaussa przyjmuje postać $-\Delta \varphi = \rho/\varepsilon$ gdzie Δ to laplasjan. Takie równanie nazywa się w równaniem Poissona.

¹⁹ Zakładamy, że ośrodek jest liniowy i izotropowy. Wtedy przenikalność elektryczna ośrodka wyrażona jest pojedynczą liczbą $\varepsilon = \varepsilon_r \varepsilon_0$, która jest iloczynem przenikalności elektrycznej próżni ε 0 oraz względnej przenikalności ośrodka, ε_r . Na przykład dla wody w temperaturze 20 °C, $\varepsilon_r = 78$, a dla gliceryny $\varepsilon_r = 47$.

jako funkcje położenia i czasu. Znając natężenie pola elektrycznego, potencjał membranowy uzyskujemy całką:

$$V_{Mem}(t) = -\int_{0}^{d} E(x,t)dx.$$
 (5.80)

Krzywa kalibracji oraz limit detekcji dla membrany jonoselektywnej²⁰

Wykonujemy symulacje dla pewnego zakresu stężeń jonu głównego $c_{1L} = c_{l^2; L} = 10^{-7} - 10^3 \text{ mol/m}^3$ aż do osiągnięcia stanu stacjonarnego (w praktyce uzyskujemy – w tym przykładzie – stan stacjonarny po ok. 1000 s). W tym celu wykorzystamy *Parametric sweep* w COMSOLu. Na osi *x* odkładamy stężenia, a na osi *y* wartość stacjonarnego potencjału membrany, $V_{Mem,ss}$. Gdy dla osi *x* przyjmiemy skalę logarytmiczną, to uzyskujemy charakterystyczną krzywą "odpowiedzi nernstowskiej" (część liniowa) razem z fragmentem odpowiedzialnym za wpływ jonu przeszkadzającego. Kształt tej krzywej odpowiada empirycznemu równaniu Nikolskiego–Eisenmana

$$\Delta V = \Delta V^{0} + \operatorname{Slog}(a_{i} + K_{ii}a_{i}^{z_{i}/z_{i}}), \qquad (5.81)$$

gdzie *S* oraz K_{IJ} oznaczają współczynnik nachylenia oraz *potencjometryczny współczynnik* selektywności, a_i jest aktywnością jonu głównego, a_j aktywnością jonu przeszkadzającego. Dla niedużych stężeń możemy przybliżyć aktywności stężeniami, i wtedy równanie powyższe ma postać

$$\Delta V = \Delta V^0 + \operatorname{Slog}(c_1 + K_{11}c_1^{z_1/z_1}).$$
(5.82)

Wyniki potencjału stacjonarnego znajdują się w tabeli (Tab. 5-3).

Tab. 5-3 Wyniki symulacji. W pierwszej kolumnie są stężenia jonu głównego I²⁺ (w COMSOLu jest to zmienna c1L) dla stężeń 10^3-10^{-10} , a w drugiej potencjał $V_{\text{Mem,ss}}$ w stanie stacjonarnym (*ss*).

<i>c_{1^{2+,L}}</i> (mol/m ³)	V _{Mem,ss} (V)
1.00E+03	0.019
1.00E+02	-29.495
1.00E+01	-59.095
1.00E+00	-88.588
1.00E-01	-117.299
1.00E-02	-143.113
1.00E-03	-160.852
1.00E-04	-166.789
1.00E-05	-167.644
1.00E-06	-167.734
1.00E-07	-167.743

Wykres krzywej kalibracyjnej dla rozważanego układu membrany jonoselektywnej (ISE) jest poniżej.

²⁰ W. Kucza, M. Danielewski, A. Lewenstam, *EIS simulations for ion-selective site-based membranes by a numerical solution of the coupled Nernst-Planck-Poisson equations*, Electrochemistry Communications 8 (**2006**), 416–420.

Rys. 5-12 Potencjał membranowy dla różnych stężeń jonu głównego $c_{1L} = c_{l^{2+}, L}$ uzyskany w COMSOLu. Dane do obliczeń – Tab. 5-2. Na osi poziomej (stężenia) jest skala logarytmiczna. Widać, że poniżej stężenia 10⁻³ mol/m³ elektroda traci zdolność do oznaczania jonów l^{2+} .

Zadanie 1. Wykonaj projekt w COMSOLU do obliczenia potencjału membrany jonoselektywnej w oparciu o równania Nernsta–Plancka–Poissona. W szczególności wykonaj krzywą kalibracji dla membrany. Konieczne dane do obliczeń znajdują się w tabeli (Tab. 5-2).

Rozwiązanie:

- 1. Uruchom program *COMSOL Multiphysics* i wybierz *Model Wizard*. Jako *Space Dimension* wybierz 1D.
- W oknie Select Physics wybierz interfejs General Form PDE (g). Dodaj trzy zmienne o nazwach c1, c2 oraz c3. Wybierz jednostki Concentration (mol/m^3) oraz Reaction rate (mol/(m^3*s)).

Search	General Form PDE (g)
Proceeding (2019) Proceedin	Dependent Variables
Δω General Form PDE (g) Δω General Form PDE (g) Δω Coefficient Form PDE (c) Δ ACDC (1) Acoustics Δ (constraint form PDE (c)) Δ (constraint form PDE (c)) Δ (constraint form PDE (c)) (1) Acoustics (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Field name: Number of dependent variables: Dependent variables: c1 c2 c3 c3 c1 c2 c3 c1 c2 c3 c3 c3 c3 c3 c3 c3 c3 c3 c3
	Units Dependent variable quantity Concentration (mo/um*3) - Source term quantity Reaction rate (mol/(m*3*s))

 Zaimplementuj równanie na pole elektryczne. Dodaj kolejny interfejs General Form PDE (g). Zmień nazwę zmiennej na E. Jako jednostki wpisz N/C oraz A/m² dla zmiennej i członu źródłowego.

Sea	rch General Form PDE (g2)
Part Poisson's Equation (poeq)	Dependent Variables
Δω General Form PDE (g) Δω General Form Boundary PDE (gb) Δω Coefficient Form PDE (c) Δω Mathematics	Field name: E Number of dependent variables: E Dependent variables: E F
	Units Dependent variable quantity None
	Unit:
	N/C
	- Source term quantity
	Unit:
	A/m^2
	Unit: A/m^2
Ac	id

- 4. W sekcji *Study* wybierz *Time Dependant* i zatwierdź klikając *Done*.
- 5. Zdefiniuj parametry występujące w modelu (Tab. 5-2), wprowadzając je do tabeli *Parameters*, tak jak na poniższej grafice.

Model Builder	· Settin	as			• # Graph	nics Conv	ergence Plo	d 1										~ 1
	Paramet	ters			QQ		B				40 -	N 2 :	DIM	2				
 Sektroda jonoselektywna.mph (root) 					^											 	 	
Global Definitions	 Para 	imeters																-
Materials	** Name	Expression	Value	Description														
 Component 1 (comp 1) 	d	0.1[mm]	1E-4 m															
Definitions	D1	1.0E-11[m^2/s]	1E-11 m ² /s															
Geometry 1	D2	1.0E-11[m^2/s]	1E-11 m ² /s															
::: Materials	D3	1.0E-11[m^2/s]	1E-11 m ² /s															
 Δυ General Form PDE (g) 	z1	2	2															
General Form PDE 1	z2	1	1															
Zero Hux 1	z3	-1	-1															
- Initial Values 1	c1L	1E-7[mol/m^3]	1E-7 mol/m ³															
B Ganaral Farm DDE 1	c2L	0.5(mol/m^3)	0.5 mol/m ³															
P Tero Flor 1	c3L	0 [mol/m^3]	0 mol/m ^a															
P Initial Values 1	c1M	0.5[mol/m^3]	0.5 mol/m ²															
A Mesh 1	c2M	0[mol/m^3]	0 mol/m ³															
4 nos Study 1	c3M	1[mol/m^3]	1 mol/m ³															
A Step 1: Time Dependent	c18	1000 [mol/m^3]	1000 mol/m ²															
Results	c2R	0[mol/m^3]	0 mol/m ²															
	c3R	0(mol/m^3)	0 mol/m ³															
	k1Lf	1E-3[m/s]	0.001 m/s															
	k2Lf	4.472E-71m/s]	4.472E-7 m/s															
	k3Lf	0(m/s)	0 m/s															
	k1Lb	1E-3(m/s)	0.001 m/s															
	k2Lb	1E-3(m/s)	0.001 m/s															
	k31.b	0(m/s)	0 m/s															
	k1Rf	1E-3/m/sl	0.001 m/s															
	k2Rf	4.472E-31m/s1	0.004472 m/s															
	k3Rf	0(m/s)	0 m/s															
	k1Rb	1E-3(m/s)	0.001 m/s															
	k2Rb	1E-3[m/s]	0.001 m/s															
	k3Rb	0(m/s)	0 m/s															
	eps r	10	10															
	T	20IdeoC1	293.15 K															m
	1	F const//R const*T)	39,586 1/V		1		.8	-0.6	-0.4	-0.3	2	0	0.2		0.4	 0.6	 0.8	
	10	1E-2[4/m^2]	0.01 A/m ²						0.4									
	Ľ				Mess	ages Pro	gress Log	Table										* # ×

6. Następnie dodaj węzeł *Variables* i wprowadź wyrażenia na strumienie dla wszystkich trzech składników (**J1**, **J2** oraz **J3**):

```
-D1*c1x+D1*z1*f*c1*E, -D2*c2x +D2*z2*f*c2*E, -D3*c3x+D3*z3*f*c3*E.
```

Woder builder	o o cui rejo	Graphics	Convergence Plot	1							* 8
← → ↑ ↓ ∓ + Ⅲ Ⅲ +	Variables	999	+ 🕀 🔶 •	= *	~	1 100 40 📼	0 2 2	🖸 🔒			
Sektroda jonoselektywna.mph (root) Global Definitions	Label: Variables 1									 	٠
Constant Constan	Liter Water I Geometric Entry Selection Geometric Entry Selection Geometric Entry Selection Commit entry look. Entire model										9
A debt 1 A debt 1 No of the second s				T		102		0.2	0.4	 	m

7. Utwórz geometrię. Dodaj *Interval*, o początku **0** i końcu **d**.

Model Builder	* * Settings		• # Gra	phics Converg	ence Plot 1						~ 1
	Interval		Q	Q 🙊 🖶 🔛		$\blacksquare - \neg \times$	 🕅 🗠 📼	03	08		
	Build Selected Build All Objects Label: Interval 1										۰
there is a component (comp !)	Interval Number of intervals One Left endpoint Bight endpoint d		• m m								
	Selections of Resulting Entities Contribute te Name Resulting dejects selection Show in physics: Domain selection	• Ne	~								

 Zdefiniuj równania dyfuzji. W General Form PDE 1, w polach tekstowych Γ w Conservative Flux wprowadź (wcześniej zdefiniowane zmienne) J1, J2, J3. Dla każdego składnika wyzeruj Source Term.

Model Builder	Settings • I Graphics Convergence Plot 1
Selettroda jonoselektywna.mph (root) Global Definitions	Labels General Form PDE 1
Pi Parameters	Ormain Selection
 Component 1 (comp 1) 	Selection: All domains
Variables 1	
View 1	
Geometry 1	Active
E Form Union (fin)	0
11 Materials	
General Form PDE (g) General Form PDE 1	
Zero Flux 1	Override and Contribution
 Initial Values 1 A Au General Form PDF 2 (n2) 	Equation
General Form PDE 1	Conservative Flux
Ero Flux 1 P Control of the second	(finites and fini
Mesh 1	
4 100 Study 1	
Step 1: Time Dependent	te mywin
	Source Term
	0 mol/(m ¹ 2)
	f 0 mol/(m ² s)
	0 mol/(m ² s)
	Damping or Mass Coefficient
	1 1 0 1 0 1
	Mass Coefficient O <tho< th=""> O <tho< th=""></tho<></tho<>

9. W *Initial Values 1* w polach tekstowych *c1*, *c2*, *c3* wprowadź warunki początkowe: **c1M**, **c2M**, **c3M**.

Model Builder · · · · · · · · · · · · · · · · · · ·	Settings ~	■ Graphics Convergence Plot 1 ・ Q Q Q 会 田 小・ 二 二 → 大 ※ ※ ※ 回 図 ※ ■ 国 電 つ @ 量
Sektroda jonoselektywna.mph (root) Global Definitions	Label: Initial Values 1	
Pi Parameters	 Domain Selection 	
 Component 1 (comp 1) Definition 	Selection: All domains	
a= Variables 1	Gell 1	+
View 1		
interval 1 (i1)	Active (
Horm Union (fin)		
P- Zero Flux 1	Deverride and Contribution	
Initial Values 1 Au General Form PDE 2 (a2)		
General Form PDE 1	Initial value for c1:	
P Initial Values 1	c1 c1M mol/m ¹	
Mesh 1	Initial value for c2	
Step 1: Time Dependent	initial value for c ?	
Results	c3 c3M mol/m ²	
	Initial time derivative of c1:	
	$\frac{dc1}{dt} = 0$ mol/(m)	4
	Initial time derivative of c2:	
	<u>dc2</u> 0 mol/(m)	1
	Ot Initial time derivative of c3	
	<u>dc3</u> 0 mol/(m)	
	dt -	×10 ⁻⁴ m
		0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10. Zdefiniuj warunki brzegowe na granicy Lewy Roztwór/Membrana. Dodaj Flux/Source dla lewego brzegu i wprowadź wyrażania Boundary Flux/Source: k1Lf*c1L oraz k2Lf*c2L. Rozwiń Boundary Absorption/Impedance Term i w pola q wpisz k1Lb i k2Lb tak jak na grafice poniżej.

Model Builder	Cottings				. Gran	hirr Converou	ence Plot 1									
	Settings				+ Grap	a da da	ence Piot I			1991 X80 1 Am						
4 (* Elektroda innoralektrouna meh (mot)	Huysource			1.0	4.0	A DA V DD	· · · ·		<	38 300 40						
4 () Global Definitions	Label: Flux/Source 1				2											
Pi Parameters	▼ Boundary Select	ion														
Component 1 (comp 1)	A L Married				-											
Definitions	Selection: Manual				-											
Variables 1	<u>(m)</u> 1			Ten .												
A 🖂 Geometry 1	Active			6 1	61											
Form Linion (fin)																
1 Materials																
▲ Δu General Form PDE (g)																
P- Zero Flux 1	Override and Co	ontribution														
Enitial Values 1	▼ Equation															
► Flux/Source 1 Au General Form PDE 2 (a2)	Show equation accumi				6	-										
Mesh 1	Study 1. Time Deper	ident			. L	<u> </u>										
Study 1	$\cdot \mathbf{n} \cdot \Gamma = q \cdot q \mathbf{u}$															
Data Sets																
Tables	Boundary Hux/Se	ource														
✓ 1D Plot Group 1	k1Lf*c1L			mol/(m	-5)											
🗠 Line Graph 1	g k2Lf*c2L			mol/(m	-5)											
Export	0			mol/(m	-5)											
Reports	 Boundary Absor 	ption/Impedance Term														
	Laur															
	KILD	m/s v	m/s 0	n 1	Vs											
	4 0	m/s K2LD	m/s 0	n	VS											
		m/s 0	m/s 0	n	v's											-10.4
					-	6	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	10 m
																-

11. Analogicznie zdefiniuj strumienie na granicy Membrana/Prawy Roztwór. Dodaj kolejny *Flux/Source* dla prawego brzegu i wprowadź wyrażania dla *Boundary Flux/Source* w polach g: k1Rf*c1R oraz k2Rf*c2R. Rozwiń *Boundary Absorption/Impedance Term* i w polach q wpisz k1Rb oraz k2Rb tak jak na grafice poniżej.

Model Builder	Settings -	Graphics Convergence Plot 1
	Flux/Source	Q Q Q Q (Q (● 図) →
	Label: Flux/Source 2	
Pi Parameters	▼ Boundary Selection	
 Component 1 (comp 1) Definitions 	Selection: Manual	
a= Variables 1	2	
A Geometry 1	Artise R 3	
Interval 1 (it) Form Union (fin)		
11 Materials		
General Form PDE (g) General Form PDE 1		
P Zero Flux 1	Override and Contribution	
	✓ Equation	
Flux/Source 2	Show equation assuming:	•
Mesh 1	Study 1, Time Dependent	_
Study 1 Besult	$-\mathbf{n} \cdot \Gamma = g - q\mathbf{u}$	
Data Sets	▼ Boundary Flux/Source	
Tables	k1Rf*c1R mol/(m²	
4 ~ 1D Plot Group 1	g k2Rf*c2R mol/(m ²	
▷ Cine Graph 1 ▷ 🗸 1D Plot Group 2	0 mol/(m ²	
Contemport Reports	 Boundary Absorption/Impedance Term 	
	k1Rb m/s 0 m/s 0 m	
	9 0 m/s k2Rb m/s 0 m	
	0 m/s 0 m/s 0 m	
		×10 ⁻⁴ m
		0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W interfejsie General Form PDE 2 zaimplementuj równania na pole elektryczne. W polach tekstowych Conservative Flux wpisz 0. W polu tekstowym Source Term wprowadź: I0 - F_const* (z1*J1+z2*J2+z3*J3). W polu tekstowym Damping or Mass Coefficient wpisz: eps_r*epsilon0_const. Pozostaw dobyślne warunki brzegowe i początkowe.

Model Builder	Settings	Graphics Convergence Plot 1 v s
$\leftarrow \rightarrow \uparrow \downarrow \mp \bullet \equiv \exists I \equiv \bullet$	General Form PDE	
Selektroda jonoselektywna.mph (root) Global Definitions	Label: General Form PDE 1	0
I Materials	 Domain Selection 	
 Component 1 (comp 1) Epinitions 	Selection: All domains	
a= Variables 1	1	
▲ 🖄 Geometry 1	Active 10 18	
Form Union (fin)		
↓ Auterials ↓ Auterial Form PDE (a)		
General Form PDE 1	b. Greenide and Contribution	
P Initial Values 1	Equation	
Flux/Source 1 Flux/Source 2	Conservative Flux	
General Form PDE 2 (g2)	<u>Г</u> 0 А/т	
P- Initial Values 1	▼ Source Term	
▲ Mesh 1 ∡ ∽∞ Study 1	f 10 - F_const*(z1*J1+z2*J2+z3*J3) A/m ²	
Step 1: Time Dependent	▼ Damping or Mass Coefficient	
	d _a eps_r*epsilon0_const	
	 Mass Coefficient 	
	ea 0 s ⁵ A ² /(kg·m ³)	
		v10 ⁴
		0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

13. Utwórz siatkę obliczeniową. Wybierz *User-controlled mesh*. W węźle *Size* wybierz opcję *Custom* i w pole *Maximum element size* wprowadź **d/1000**, a w pole *Maximum element growth rate*: **1.05**.

Model Builder	* * Settings	~ #	Graphics Convergence I	Plot 1				~ 1
+ → ↑ ↓ ∓ • Ⅲ Ⅲ •	Size		QQ®⊕⊞ ↓	$ = \square - \times$		 0 🙆 🗎		
	Label: Size	P						۵
Materials Component 1 (comp 1)	Element Size							
 Definitions a= Variables 1 	Calibrate for:							
View 1 4 Secondary 1	General physics	•						
Form Union (fin)	Custom							
 Δυ General Form PDE (g) 	 Element Size Parameters 							
Contrain form PDE 1 P→ Zero Fixat P→ Zero Fixat P→ Initial Values 1 → Fixat/Source 2 Au (General Form PDF 2 (α2)	Maximum element size: d/1000 Maximum element growth rate: 1.05	m						
Ceneral Form PDE 1 → Zero Flux 1 → Initial Values 1	Resolution of narrow regions:							
A Meth 1 Construction Cons								
			· · · ·		L. L.	 	 	 ×10 ⁻⁴ m

14. Zagęść siatkę na lewym i prawym brzegu. Kliknij prawym przyciskiem na Edge 1 i z listy wybierz Size. Zmień Geometric entity level na Boundary i wybierz lewy i prawy brzeg. Zaznacz opcję Custom i w pole Maximum element size wprowadź 1E-10, a w pole Maximum element growth rate: 1.05.

Model Builder	Settings		Graphics Convergence Plot 1	4
$\leftarrow \rightarrow \uparrow \downarrow = \bullet \exists \uparrow \exists \downarrow \exists \downarrow = \bullet$	Size		Q Q @ ⊕ ⊞ ↓ ▼ = − = \	
I Control proceedings and p	El Build Selected El Build All Label: Size 1 Geometric Entry Selection Geometric Entry Selection Geometric Entry Selection	-		2
	Selector Manual Active	•		
	Element Size Calibrate for General physics •	•	·	
	Predefined Normal Cuttom Element Size Parameters			
bills Step 1: Time Dependent ↓ ∰ Results	v/ avarum ement see 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m	×10 ⁴	m
			0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	

15. W węźle *Step 1: Time Dependent* wprowadź czasy: **0 10^range(-5,1,4)** i uruchom obliczenia. Możesz otrzymać komunikat o błędzie, gdy *Solver* nie może uzyskać zgodnych warunków początkowych. Wtedy należy wprowadzić modyfikację w doborze kroku początkowego.

16. Wybierz węzeł *Time-Dependant Solver 1,* zaznacz opcję *Initial Step* i wpisz **1E-9**. Uruchom ponownie projekt klikając *Compute*.

Model Builder	Settings		- I	Graphics										× 1
	Time-Dependent Solver			Q Q @ +	🗄 🧄 🕶		× +++ ++>		• • •	C 🙆 🗎				
Selektroda jonoselektywna.mph (root)	Compute to Selecte	d = Compute												
Pi Parameters	Label: Time-Depende	nt Solver 1												
Materials A — Component 1 (comp1)	▼ General													
 Definitions Variables 1 	Defined by study step:	Step 1: Time Dependent	• I1											
View 1	Time unit:	5												
Interval 1 (7)	Times	0 10^range(-5,1,4)	s											
E Form Union (fin)	Relative tolerance:	0.01												
Haterials	nemere contrained													
General Form PDE (g) General Form PDE 1	 Absolute Toleran 	ce												
⁰ → Zero Flux 1	Global method:	icaled	•											
n Initial Values 1	Tolerance method:	actor												
- Flux/Source 2	Talance metrical													
D du General Form PDE 2 (g2)	iolerance factor:													
Mesh 1	Vanables:													
A 100 Study 1	Dependent variable c1	(comp1.c1)												
4 h- Solver Configurations	Dependent variable c2	(comp1.c2)												
 Solution 1 (sol1) 	Dependent variable E	comp1.E)												
Fig Compile Equations: Time Dependent														
4 Ma Time-Dependent Solver 1	Method: Use global		•											
Direct	☑ Update scaled absol	ute tolerance												
Advanced Fully Coupled 1	 Time Stepping 													
S Error 1	Method:	BDF	•											
A Results	Steps taken by solver:	Free	•											
Data Sets	Initial step:	V 1E-9	5											
Derived Values	Maximum step:	0.1												×10 ⁻⁴ m
Export	Maximum BDE and an			· 0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
PCP o	maximum BUF order:	-1	•					2/14		510	-10	1.0		-

17. Wyznacz potencjał membranowy w funkcji czasu. Aby to zrobić należy scałkować -E po x od 0 do d. Kliknij prawym przyciskiem *Derived Values* i z listy wybierz *Integration>Line Integration*. Wybierz domenę całkowania, którą jest odcinek [0, d]. Do pola *Expression* wpisz -E. Po kliknięciu *Evaluate*, w dolnym prawym rogu okna wyświetlą się wartości całki dla poszczególnych czasów. W tym przypadku potencjał membranowy dąży do -0.33 V.

Model Builder	Settings	Graphics Convergence Plot 1
← → ↑ ↓ ⊕ • III III •	Evaluate -	
Concel Jonates (manufacture) (1000) P Parmetes P Autimite Component I (corp.1) ✓ E Orbinoon	Label: Line Integration 1	×
	▼ Data	
	Data set: Study 1/Solution 1 (sol1)	
View 1	Time selection: All	
Geometry I interval 1 (i1)	Selection	
Form Union ((in) If Materials	Selection: Manual •	
General Form PDE (g) General Form PDE 1		
Part Cero Flux 1 Part Initial Values 1	Active	
	•	
▷ Δυ General Form PDE 2 (g2) ▷ ▲ Mesh 1		
	👻 Expressions 🕴 + 👻 +	
 Solver Configurations Solution 1 (sol7) 	** Expression Unit Description	
Compile Equations: Time Dependent	(-E V	
Ime-Dependent Solver 1 Import Direct		
Advanced		
Results Data Sets		
the Intervention 1		
E Tables	↑↓⇒▶●・	×10'* m
Reports	Expression	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
	Description:	Messages Progress Log Table 1
	✓ Integration Settings	Time (s) -E (V) 10.000 -0.27666
	Method: •	100.00 -0.30788
	Integration order: 4	v

Zadanie 2. Korzystając z przygotowanego projektu utwórz wykres krzywej kalibracyjnej dla membrany jonoselektywnej. W tym celu wykonaj serię obliczeń dla różnych wartości stężenia składnika 1 na lewym brzegu (**c1L**), a następnie oblicz potencjał membranowy dla czasu końcowego (400 s).

Rozwiązanie:

 Wybierz węzeł Step 1: Time Dependent. Zamień wcześniej wprowadzone czasy na listę: 0.001, 0.02, 1, 5, 10, 20, 100, 400. Następnie rozwińmy sekcję Study Extensions i zaznacz opcję Auxiliary Sweep. Kliknij przycisk dodawania parametru (niebieski plus) i z listy wybierz c1L. W kolumnie Parameter value list wprowadź: 10^range(-7,1,3). Uruchom projekt klikając Compute.

Model Builder	Settings		- 1	Graphics Co	nvergence Plot	1								~ 8
← → ↑ ↓ ▼ • Ⅲ Ⅲ •	Time Dependent			Q Q @ @	風しま・		× + + + + + + + + + + + + + + + + + + +							
4 🧶 Elektroda innoselektrouna meh (mot)	Compute C Update Solution							an iou						
4 () Global Definitions														
Pi Parameters	Label: Time Dependent		E											
11 Materials	▼ Study Settings													
 Component ((comp i) Definitions 	stady settings													
a Variables 1	Time unit: s		-											
View 1	Times: 0.001 0.02, 1, 5, 10, 20, 100 400		s											
Geometry 1 In Manual I	Tolerance: Physics controlled		•											
4 Au General Form PDF (a)	The second secon													
General Form PDE 1	Results While Solving													
P Zero Flux 1	· Physics and Variables Selection													
Initial values 1 Modify physics tree and variables for study step														
Flux/Source 2	** Physics interface	Solve for	Discretization											
General Form PDE 1	General Form RDF (a)	~	Diveries sattings											
R→ Zero Flux 1			Thysics seconds											-
E Initial Values 1	General Form PDE 2 (g2)		Physics settings											
4 100 Study 1	Values of Dependent Variables													
Step 1: Time Dependent	Mesh Selection													
 Solver Configurations 	C at a statistical													
A Results	 Study Extensions 													
Data Sets	Auxiliary sweep													
Derived Values	Sweep type: Specified combinations		•											
P m Tables	H													
1D Plot Group 2	Parameter name Parameter value list		Parameter unit											
ID Plot Group 3	c1L • 10^range(-7,1,3)													
4 ~ 1D Plot Group 4														
Bill lable Graph 1														
Reports	1 J 🕂 🗮 📪 🖬 📖													×10 ⁻⁴ m
				0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1

 Po zakończeniu obliczeń wyznacz potencjał membranowy w funkcji czasu. Prawym przyciskiem kliknij Derived Values i z listy wybierz Integration>Line Integration. Zmień Time Selection na Last. W polu Expression wprowadź -E i zmień jednostkę na mV. Po kliknięciu przycisku Evaluate, w prawym dolnym rogu zostanie wygenerowana tabela. Kliknij ikonę wykresu nad tabelą, aby przejść do kreatora wykresów.

Model Builder	Settings - •	Graphics Convergence Plot 1
← → ↑ ↓ ▼ • Ⅲ Ⅲ •	Line Integration	
Selectroda jonoselektywna.mph (root) Global Definitions	Evaluate •	
Pi Parameters	Label: Line Integration 1	
11 Materials	▼ Data	
A = Definitions		
a= Variables 1	Data set: Study 1/Solution 1 (sol1) • 1	
🖻 🔛 View 1	Parameter selection (c1L): All	
Geometry 1	Time estantiant () with	
A Au General Form PDF (a)	Inne seecoon	
P General Form PDE 1	Table columns: Data only •	
^D → Zero Flux 1	Selection	
n Initial Values 1		
Flux/Source 1	Selection: Manual •	
4 Δυ General Form PDE 2 (q2)	🗰 1 🔪 +	
D General Form PDE 1		
D Zero Flux 1	Active 🛍 🕅	
- Initial Values 1	÷	
4 100 Study 1		
A Step 1: Time Dependent		
 Solver Configurations 	• Expressions + • 5 •	
 Im Solution 1 (sol 7) 		
 Missons Missons Missons 	** Expression Unit Description	
Derived Values	-E mV	
∫ Line Integration 1		
Tables		
1D Plot Group 1		
▷ 10 Plot Group 3		
4 ~ 1D Plot Group 4		
Table Graph 1		×10 ⁻⁴ m
Export Report		
City reports	1 1 = X mit +	
	Exercise	Messages Progress Log Table 4 VI ×
	Expression	
	·e	FIL 1 (1) - F (m)0
	Description:	1 00067/01001/324.40
		1.0006-6/400.00-323.64
	 Integration Settings 	1.0000E-5 400.00 -315.58
		1.0006-4/400.00-225.62

3. Utworzony zostanie węzeł 1D Plot Group zawierający wykres Table Graph. W sekcji Data zmień x-axis data na c1L, Plot columns na Manual i wybierz z listy -E(mV). W sekcji Coloring and Style zmień Marker na Cycle i opcję Positioning ustaw na: In data points. W ostatnim kroku zmień skalę osi x z liniowej na logarytmiczną. Odpowiednią opcję znajdziemy w oknie Settings dla 1D Plot Group.

	Settings v #	Graphics Convergence Plot 1
	Gill Plot Label: Table Graph 1	20
	Data Table Table 4 Table Table 4 Table Table 4 Table Table 4 Table 4	40
	Column: clt. t() t(mi)	100 - 120 -
→ Fac/Source 2 ▲ Δu General Form PDE 1 [®] _ Zore Fac: 1 [®] _ Initial Values 1 [®] _ Megh 1	Transformation: None •	140- 2 480- ¥ 180-
*** Stup:1 Pletingungs part Stup:1 Preprocessing *** Stup:1 Preprocessing *** Stup:1 Preprocessing *** Coloring and Style Use style **** Data Stat Use style ************************************	Processing Coloring and Style	200
	Line Solid • Color Cycle • Width 1	260
	Line markers Marker: Cycle • Positioning: In data points •	3000 3200 10 ⁻⁷ 10 ⁻⁶ 10 ⁻⁴ 10 ⁻³ 10 ⁻¹ 10 ⁻¹ 10 ⁻¹ 10 ⁻¹ 10 ⁻¹ 10 ⁻¹
M Reports	b Legends	Messages Progress Log Table 4
Bibliografia

- 1. K.N. Mikhelson, Ion-Selective Electrodes, Springer, 2013.
- 2. K. Maksymiuk, A. Michalska, "Elektrody jonoselektywne klasyka i nowe koncepcje", CHEMIK, 2015, tom 69, nr 7, s. 373–382.
- 3. H. Freiser, Ion-Selective Electrodes in Analytical Chemistry, Springer, 1978.
- 4. J.J. Jasielec, R. Filipek, K. Szyszkiewicz, J. Fausek, M. Danielewski, A. Lewenstam, Computer simulations of electrodiffusion problems based on Nernst–Planck and Poisson equations, Computational Materials Science, Vol. 63, 2012, s 75-90.

5.6. Transport masy w materiałach porowatych

Wprowadzenie. Transport masy w strukturach porowatych jest zazwyczaj opisywany przy użyciu uproszczonych modeli z użyciem efektywnych (czyli uśrednionych) współczynników transportowych. Jest to w większości przypadków konieczne, ponieważ typowe wymiary porów i cząstek tworzących strukturę porowatą są o kilka rzędów wielkości mniejsze niż rozmiar obszaru, w którym zachodzi transport. Istotnym zagadnieniem jest zbadanie założeń i uproszczeń stosowanych podczas traktowania struktury porowatej jako homogenicznej (jednorodnej) poprzez porównanie modelu jednorodnego z modelem używającym szczegółowej struktury porowatej materiału. Modelowa struktura porowata wykorzystana w tym przykładzie jest pokazana na Rys. 5-13.

Rys. 5-13 Modelowa struktura porowata. Domena oznaczona na niebiesko jest obszarem, w którym zachodzi proces dyfuzji.

W przykładzie przedstawiona zostanie koncepcja efektywnego współczynnika dyfuzji w ośrodkach porowatych poprzez porównanie transportu w modelowej strukturze porowatej z uproszczonym podejściem do jednorodnych ośrodków porowatych używającym efektywnych właściwości transportowych. Przykład składa się z dwóch części. Pierwsza opisuje, jak utworzyć projekt z modelową geometrią (Rys. 5-13). Druga część pokazuje alternatywne podejście, jak przygotować projekt dla ośrodka jednorodnego wykorzystując wyznaczony w części pierwszej efektywny współczynnik dyfuzji.

Szczegółowy opis modelu. Dyfuzyjny transport masy w modelowej geometrii, przedstawionej na rysunku (Rys. 5-13) opisuje poniższe równanie (por. (1.51)):

$$\frac{\partial c}{\partial t} + \nabla \cdot (-D\nabla c) = 0. \tag{5.83}$$

gdzie c oznacza stężenie (mol/m³), a D współczynnik dyfuzji (m²/s).

Na lewym brzegu zadany jest warunek Dirichleta, tj. stężenie na lewym brzegu jest równe c₀ i jest dane:

$$c(0,y,t) = c_0.$$
 (5.84)

Na prawym brzegu (x = a) zadany jest strumień, (warunek typu Neumanna), a jego wartość jest proporcjonalna do różnicy stężeń na brzegu:

$$(-D\nabla c) \cdot \mathbf{n} = k_m (c - c_1) \tag{5.85}$$

gdzie k_m to współczynnik przenoszenia masy (m/s), a c_1 to stężenie na zewnątrz obszaru.

Na wszystkich pozostałych granicach, tj. dolnym i górnym brzegu oraz na powierzchniach porów, nie ma przepływu masy przez brzeg:

$$\boldsymbol{n} \cdot (-D\nabla c) = 0. \tag{5.86}$$

Początkowy rozkład (dla t = 0) jest zadany funkcją, której profil ma kształt dzwonu (krzywa Gaussa) wzdłuż osi x, z maksimum dla x = 0 wynoszącym $c = c_0$:

$$c|_{t=0} = c_{int}(x, y) = c_0 \exp(-a_a x^2).$$
 (5.87)

Wartości liczbowe parametrów użytych w projekcie COMSOLa są podane w tabeli poniżej.

<i>D</i> (m²/s)	<i>c</i> ₀ (mol/m ³)	<i>c</i> ₁ (mol/m ³)	<i>a_a</i> (m ⁻²)	km (m/s)	<i>α</i> (μm)	<i>b</i> (μm)
1·10 ⁻⁵	3	0	1000	5	40	80

Rozwiązanie:

- 1. Uruchom program *COMSOL Multiphysics* i kliknij *Model Wizard*. Jako *Space Dimension* wybierz 2D.
- 2. W oknie Select Physics wybierz interfejs Transport of Diluted Species (tds).

Select Physics		Review Physics Ir	nterface	
Added physics interfaces:	Search	Transport of Diluted Species (tds) Dependent Variables Concentration:	¢	

- 3. W sekcji Study wybierz Time Dependant i zatwierdź klikając Done.
- 4. Zdefiniuj parametry występujące w modelu, wprowadzając je do tabeli *Parameters*, tak jak na poniższej grafice.

	Parame	uers				
Global Definitions	▼ Para	✓ Parameters				
Materials	** Nam	e Expression	Value	Description		
Component 1 (comp 1)	D2D	1e-5[m^2/s]	1E-5 m ² /s	Diffusion coefficient		
Definitions	c0	3[mol/m^3]	3 mol/m ⁸	Peak initial concentration		
Geometry 1	km	5(m/s)	5 m/s	Mass transfer coefficient		
Materials	а	4e-5(m)	4E-5 m			
Iransport of Diluted Species (tds)	b	2*a	8E-5 m			
P Interface And A Properties 1	d	1E-5(m)	1E-5 m			
District Values 1	n_y	5	5			
A Mach 1	ly	2*b*(n_y-1)+d*(n_y-1)	6.8E-4 m			
Study 1	n,x	n_y-1	4			
story i	ly.	ly-2*d	6.6E-4 m			
Step 1: Time Dependent						
	38	1000	1000	initial concentration coef		
(E) Stp.) Time Dependent	aa ↑↓ Name:	1000	1000	initial concentration coef.		
(E) Strp I. The Dependent	aa ↑↓ Name: Expressie	1000	1000	initial concentration coef.		
(E) Step I. Time Dependent.	aa ↑↓ Name: Expressie Descripti	1000 = \second text{ text} text{ text{ text{ text{ text} text{ text{ text{ text{ text{ text} text{ text{ text{ text} text{ te	1000	initial concentration coef.		

 Dodaj węzeł Variables i wprowadź wyrażenie na początkowy rozkład stężenia (c_init), które dane jest wzorem: c0*exp(-aa*(x[1/mm])^2).

6. Utwórz geometrię reprezentującą modelową mikrostrukturę materiału. Kliknij prawym przyciskiem na węzeł *Geometry 1* i z listy wybierz *Ellipse*. Do pól tekstowych *semiaxis* wprowadź odpowiednio **a** i **b**. W sekcji *Position* w polu *x* wpisz **a+d**.

7. Utwórz kopie elipsy korzystając z szyków (*Arrays*). Kliknij prawym przyciskiem na węzeł *Geometry 1* i z listy wybierz *Transform>Array*. Jako *Input Object* wybierz utworzoną wcześniej elipsę. W sekcji *Size* w polu *x size* wpisz n_x, a w polu *y size*: n_y. W sekcji *Displacement* wprowadź przemieszczenie w kierunku *x*: 4*a oraz w kierunku *y*: 2*b+d.

Model Builder	Settings	Graphics Convergence Plot 1 * #
← → ↑ ↓ ∓ • Ⅲ Ⅲ • •	Array	
Material porowaty 2D.mph (root) Global Definitions Pi Parameters	E Build Selected V Build All Objects Labet Array 1	8 x10 ⁴
a≕ Variables 1 =:: Materials	▼ Input	
	tepet objects:	
No Flux 1 Initial Values 1	▼ Size	
Mesh 1 ✓ Study 1 Most Step 1: Time Dependent @ Results	Array type: Rectangular	
	* Displarament	25
	x: 4*a m y: 2*b+d m	
	Selections of Resulting Entities Contribute to New Deputing object selection Bown in physics Demain selection	
		-0.5 -1 -1

 Następnie utwórz nową elipsę dla drugiego szyku elips. Kliknij prawym przyciskiem na węzeł Geometry 1 i z listy wybierz Transform>Copy. Jako Input Object wybierz pierwszą elipsę. W sekcji Displacement wprowadź przemieszczenie w kierunku x: 2*a oraz w kierunku y: b.

Model Builder ← → ↑ ↓ ∓ • □↑ □↓ □ •	- # Settings		~ 1
Material porowaty 2D.mph (root) Global Definitions P. Parameters Wariables 1 St Materials	Build Selected Build All Objects Labet: Copy 1 Input	7.5 m	0
	Input objects:	+ 6.5 - 6 - 6 - 5.5 - 5	
 ▲ I Transport of Diluted Species (Ids) ■ Transport Properties 1 ■ No Flux 1 ■ Initial Values 1 ▲ Mesh 1 	Keep input objects Displacement	4.5	
▲ *** Study 1 March Step 1: Time Dependent ▷ Constants	Y: b Selections of Resulting Entities Contribute to None	m 1 3 2.5	-
	Contraduct on Provide Section Contraduction Contr	1.5	-
		-0.5	×10 ⁻⁴ m

 Korzystając z opcji *Transform>Array* powiel nową elipsę. W sekcji *Size* podaj wymiary x: n_x oraz y: n_y. W sekcji *Displacement* wprowadź przemieszczenie w kierunku x: 4*a oraz w kierunku y: (ly-(n_y-1)*2*b)/(n_y-2)+2*b. Kliknij *Build All*.

10. Połącz elipsy w jeden element geometrii (Union). Kliknij prawym przyciskiem na węzeł Geometry 1 i z listy wybierz Booleans and Partitions>Union. Zaznacz wszystkie elipsy i zatwierdź klikając Build Selected.

11. Utwórz prostokąt o szerokości lx i wysokości ly.

12. Odejmij elipsy od prostokąta. Kliknij prawym przyciskiem na węzeł *Geometry 1* i z listy wybierz *Booleans and Partitions>Difference*. Jako *Objects to add* wybierz prostokąt (r1), a jako *Objects to subtract* wybierzmy połączone elipsy (uni1).

13. Zdefiniuj równanie dyfuzji. W węźle *Transport of Diluted Species (tds)*, w sekcji *Transport Mechanism* należy odznaczyć opcję *Convection*.

14. W węźle *Transport Properties 1* w sekcji *Diffusion* wprowadź **D2D** w polu tekstowym *Diffusion Coefficient*. W węźle *Initial Values 1* wprowadź wartość **c_init**.

15. Zdefiniuj warunki brzegowe. Dodaj węzeł *Concentration 1,* zaznacz lewy brzeg geometrii i w pole *Concentration* wprowadź **c0**.

16. Dodaj warunek brzegowy na prawym brzegu – *Flux 1*. Zmień *Flux type* na *External Forced Convection* i w polu *Mass transfer coefficient* wprowadź **km**, a w polu *Bulk concentration*: **0**.

17. Użyj domyślnej siatki obliczeniowej (pozostaw węzeł Mesh 1 bez zmian).

18. Wykonaj obliczenia dla czasów: range(0,0.001,0.1) s.

Zadanie 1. Podczas modelowania ośrodków porowatych dokładne stężenie w strukturze porów nie jest kluczową kwestią, ponieważ opis struktury jest jednorodny i nie jest tak szczegółowy jak na Rys. 5-13. Najciekawszą kwestią jest zatem opis strumienia. Aby obliczyć średni strumień na brzegu, scałkuj go po brzegu i podziel przez jego długość, *b*:

$$\Gamma_{avg}(t) = \frac{1}{b} \int_{0}^{b} k_{m}(c(a, y, t) - c_{1}) dy.$$
(5.88)

Na podstawie wykresu przedstawiającego wyrażenia (5.88) jako funkcji czasu, dla czasu stacjonarnego odczytaj średni strumień $\Gamma^{\infty}_{avg} = \Gamma_{avg}(t \to \infty)$. Podobnie postępując wyznacz średnie stężenie na prawym brzegu (x = a) w stanie stacjonarnym $c^{\infty}_{avg} = c_{avg}(t \to \infty)$ zgodnie z definicją

$$c_{avg}(t) = \frac{1}{b} \int_{0}^{b} c(a, y, t) dy.$$
 (5.89)

Niemal liniowy profil stężenia w stanie stacjonarnym pozwala wyrazić średni strumień następująco

$$-D_{eff}\nabla c = -D_{eff}\frac{c_{avg}^{\infty} - c_{0}}{a}.$$
(5.90)

Konsekwentnie, można zastąpić dwuwymiarową strukturę porowatą za pomocą jednowymiarowej struktury homogenicznej wzdłuż osi *x*. Porównując strumienie (5.88) dla $t \rightarrow \infty$ oraz (5.90) otrzymujemy

$$D^{eff} \frac{c_0 - c_{avg}^{\infty}}{a} = \Gamma_{avg}^{\infty}.$$
(5.91)

Przekształcając wyrażenie (5.91) wyliczamy efektywny współczynnik dyfuzji w materiale porowatym:

$$D_{eff} = \Gamma_{avg}^{\infty} \frac{a}{c_0 - c_{avg}^{\infty}}.$$
(5.92)

<u>Podpowiedź</u>: Aby wyznaczyć wartości strumienia i stężenia na prawym brzegu musimy skorzystać z węzła *Derived Values*. Klikając na niego prawym przyciskiem możemy zdefiniować średnie oraz całki na różnych obiektach (liniach, powierzchniach i objętościach). Po wprowadzeniu odpowiedniego wyrażenia i wybraniu przycisku *Evaluate*, w prawym dolnym rogu pojawia się tabela z wyznaczoną wielkością dla wybranych kroków czasowych.

Zadanie 2. Oszacuj po jakim czasie ustali się stan stacjonarny (rozwiązanie nie będzie zmieniać się z czasem). Skorzystaj z wcześniej stworzonych wykresów średniego strumienia i stężenia.

Zadanie 3. Efektywne i "swobodne" współczynniki dyfuzji są zazwyczaj powiązane zależnością

$$D^{eff} = D\frac{\phi}{\tau}.$$
(5.93)

gdzie ϕ jest porowatością struktury, a τ jej krętością (ang. *tortuosity*), która jest średnią miarą rzeczywistej długości na jednostkę odległości geometrycznej jaką cząsteczka musi przebyć w porowatej strukturze.

Aby obliczyć porowatość modelowanej struktury, należy obliczyć pole obszaru symulacji Ω (równe całce z 1 po tym obszarze), a następnie podzielić ją przez powierzchnię materiału wraz z porami, tj. przez pole prostokąta $a \cdot b$:

$$\phi = \frac{1}{ab} \iint_{\Omega} 1 dx dy.$$
 (5.94)

Na podstawie wyrażeń (5.93) i (5.94) wylicz krętość τ. Krętość jest zwykle wyrażana jako potęga porowatości, co skutkuje wyrażeniem na efektywną dyfuzyjność zgodnie z wyrażeniem

$$D^{eff} = D\phi^n. \tag{5.95}$$

Użyj obliczonych wartości porowatości i efektywnej dyfuzyjności aby obliczyć wykładnik *n* w równaniu (5.95). Eksperymentalne wartości *n* dla struktur porowatych wykorzystywanych w katalizatorach, glebach i innych strukturach porowatych zwykle mieszczą się w zakresie 1,5–2.

Alternatywny opis dyfuzji w ośrodku porowatym. Zakładając, że ośrodek porowaty charakteryzuje się efektywnym współczynnikiem dyfuzji D^{eff} oraz porowatością $0 \le \phi \le 1$, transport masy w jednorodnym ośrodku o cechach materiału porowatego może opisać za pomocą równania:

$$\phi \frac{\partial c}{\partial t} + \nabla \cdot (-D^{eff} \nabla c) = 0.$$
(5.96)

Współczynniki ϕ oraz *D* wyliczymy na podstawie obliczeń dla modelowej struktury (Rys. 5-13). Warunki brzegowe i początkowe są takie same jak w omówionym projekcie COMSOLa.

Zadanie 4. Korzystając z obliczonej wartości efektywnego współczynnika dyfuzji, zaimplementuj uproszczony homogeniczny model transportu w geometrii 1D – równanie (5.96). Następnie sporządź wykres średniego strumienia na prawym brzegu dla obu modeli w funkcji czasu i porównaj je ze sobą.

Bibliografia:

- 1. S. Whitaker, Flow in Porous Media I, A Theorical Derivation of Darcy's Law, tom. 1, Transport in Porous Media, 1986, s. 3–25.
- 2. H. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl Sci Res, tom. 2, 1951, s 155–161.
- 3. E. Weber, M. Fernandez, P. Wapner, W. Hoffman, Comparison of X-ray micro-tomography measurements of densities and porosity principally to values measured by mercury porosimetry for carbon-carbon composites, Carbon N. Y., tom. 48, 2010, s 2151–2158.
- 4. K.M. Steel, W.J. Koros, Investigation of porosity of carbon materials and related effects on gas separation properties, Carbon, tom. 41, 2003, s 253–266.

5.7. Optymalizacja procesu SHS

Wprowadzenie – **proces SHS.** Dążąc do zrównoważonego rozwoju, stajemy przed wyzwaniem modernizacji przemysłu, tak aby opierał się na nowych, przyjaznych dla środowiska, wysoce energooszczędnych i niskoodpadowych technologiach. Przykładem takiej technologii jest proces samorozwijającej się syntezy wysokotemperaturowej (SHS – ang. *Self-propagating High-Temperature Synthesis*), która może zostać wykorzystana do syntezy półprzewodnikowych krzemków, selenków i antymonków. Materiały te mogą być użyte do konstrukcji termoelektrycznych urządzeń chłodniczych lub termoelektrycznych generatorów przetwarzających ciepło odpadowe w energię elektryczną. Niektóre z nich mają też właściwości przydatne w innych zastosowaniach, takich jak elementy do chłodzenia mikroprocesorów i czujników w urządzeniach mikroelektronicznych, absorbery światła w ultra cienkich ogniwach słonecznych, źródła energii w fototermicznej terapii tkanek nowotworowych, układy do magazynowania wodoru czy elektrody w ogniwach elektrochemicznych.

W porównaniu do tradycyjnych metod wytwarzania materiałów w drodze reakcji w fazie stałej, które są na ogół czasochłonne i energochłonne, SHS ma wiele zalet: jest szybka, przebiega podobnie do rozprzestrzeniania się płomienia w czasie spalania materiałów palnych. Syntezę w sprasowanej mieszaninie proszków inicjuje lokalny zapłon (np. iskra elektryczna lub grzejnik oporowy). Po rozpoczęciu reakcja przebiega samoczynnie dzięki temu, że towarzyszy jej wydzielanie ciepła (efekt egzotermiczny). Front reakcji przesuwa się wzdłuż próbki aż do momentu, gdy cała objętość przekształci się w produkt. Nie wytwarza żadnych, albo bardzo mało produktów odpadowych i ogólnie można ją zakwalifikować jako technologię zieloną. Dodatkowo przesuwający się front reakcji powoduje wypieranie zanieczyszczeń, przez co poprawia się jakość otrzymywanego materiału.

Jednakże, pomimo wielu zalet SHS, nadal aktualne pozostają pewne problemy do rozwiązania. Do nich należą na przykład, kłopotliwe skalowanie (tzn. przejście od skali laboratoryjnej do przemysłowej), trudności w zapewnieniu warunków adiabatycznych, wystarczającej prędkości propagacji i wysokiego stopnia przereagowania w całej objętości mieszaniny proszkowej. Jednym z narzędzi jakie możemy wykorzystać do rozwiązania wyżej wymienionych problemów jest modelowanie numeryczne.

Opis procesu SHS. SHS jest przykładem zjawiska łączącego różne procesy fizyczne i chemiczne (ang. *multiphysics*). Aby go poprawnie opisać musimy uwzględnić trzy sprzężone ze sobą procesy:

- reakcję SHS zachodzącą w sprasowanym złożu reagentów;
- transport ciepła w próbce i otaczającej komorze reaktora.
- przepływu gazu w komorze reaktora.

Schemat analizowanego układu przedstawiono na Rys. 5-14. Obszar obliczeniowy składa się z trzech elementów: komory reaktora wypełnionej gazem (Ω_R), wstępnie sprasowanego złoża (Ω_Z) oraz stolika (Ω_S). W trakcie zachodzenia procesu, przez komorę przepływa obojętny gaz, o zadanej prędkości i temperaturze (na *Wlocie*) oraz zadanym ciśnieniu (na *Wylocie*). Temperatura zewnętrznych ścian reaktora jest stała w trakcie trwania procesu (*Temperatura otoczenia*). Na powierzchni sprasowanego złoża jest strefa *Zapłonu* gdzie przykładane jest źródło ciepła przez krótki początkowy czas procesu. Na wszystkich ścianach złoża następuje wymiana ciepła w wyniku konwekcji i promieniowania. W obrębie obszaru sprasowanego złoża zachodzi właściwa reakcja SHS.

Rys. 5-14 Schemat układu SHS.

Proces SHS jest opisany zależnymi od czasu wielkościami: stopień przereagowania (η), temperatura (T), pole wektorowe prędkości (**u**) oraz ciśnienie (p). Reakcja SHS, zachodząca w złożu Ω_Z opisana jest poniższym równaniem (szybkość stopnia przereagowania):

$$\frac{\partial \eta}{\partial t} = (1 - \eta)^n k_r e^{\frac{-E_a}{RT}},$$
(5.97)

gdzie n - rząd reakcji, $k_r - stała szybkości (s⁻¹), E_a - energia aktywacji reakcji (kJ/mol). We wszystkich trzech obszarach (domenach) zachodzi proces transportu ciepła opisany równaniem (por. (1.39))$

$$\rho_i C_{p,i} \frac{\partial T}{\partial t} + \rho_i C_{p,i} \boldsymbol{u} \cdot \nabla T = \nabla \cdot (\kappa_i \nabla T) + Q, \qquad (5.98)$$

gdzie ρ_i – gęstość, $C_{p,i}$ – pojemność cieplna oraz κ_i – przewodnictwo cieplne, indeks *i* – odnosi się do domeny. W każdej z domen – komorze, sprasowanym złożu oraz stoliku – powyższe parametry przyjmują inne wartości, adekwatnie do materiału. Ponadto, nie wszystkie procesy zachodzą w każdej z domen. Człon konwekcyjny ($\rho_i C_{p,i} \mathbf{u} \cdot \nabla T$) jest obecny tylko w domenie wypełnionej obojętnym gazem, natomiast człon źródłowy (Q) rozpatrujemy tylko w obrębie złoża i dany jest poniższym równaniem

$$Q = -\Delta H_r \cdot \frac{\partial \eta}{\partial t} \cdot \rho, \qquad (5.99)$$

gdzie ΔH_r jest ciepłem (entalpią) reakcji.

W projekcie rozważamy otrzymywanie krzemku magnezu metodą SHS

$$2Mg + Si \rightarrow Mg_2Si \tag{5.100}$$

Ciepło tej reakcji wyznaczamy na podstawie entalpii tworzenia

$$\Delta H_r(T) = \Delta H_{f(Mg_2Si)}(T) - 2\Delta H_{f(Mg)}(T) - \Delta H_{f(Si)}(T).$$
(5.101)

Entalpia tworzenia w temperaturze *T* może zostać wyznaczona z odpowiednich pojemności cieplnych C_p , standardowych entalpi tworzenia ΔH_f^o oraz równania Kirchhoffa $\Delta C_p = (\partial \Delta H / \partial T)_p$:

$$\Delta H_{f(Mg_{2}Si)}(T) = \Delta H_{f(Mg_{2}Si)}^{\circ} + \int_{298}^{T} C_{\rho(Mg_{2}Si)}(T')dT', \quad \Delta H_{f(Si)}(T) = \int_{298}^{T} C_{\rho(Si)}(T')dT',$$

$$\Delta H_{f(Mg)}(T) = \int_{298}^{923} C_{\rho(Mg)s}(T')dT' + \Delta H_{Mg(s/I)}(923) + \int_{923}^{T} C_{\rho(Mg)I}(T')dT',$$
(5.102)

gdzie standardowa entalpia tworzenia ΔH_f^o dla pierwiastków wynosi zero, $\Delta H_{Mg(s/I)}$ (923K) jest ciepłem przemiany fazowej magnezu, a indeksy "s" i "l" oznaczają odpowiednio fazę stałą i ciekłą. Ostatnim procesem fizycznym rozpatrywanym w modelu jest przepływ obojętnego gazu, opisany równaniem Naviera–Stokesa dla cieczy lekko ściśliwych:

$$\rho \frac{\partial u}{\partial t} + \rho (u \cdot \nabla) u = \nabla \cdot \left[-\rho I + \mu (\nabla u + (\nabla u)^{\mathsf{T}}) - \frac{2}{3} \mu (\nabla \cdot u) I \right],$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0.$$
(5.103)

Równania te są rozpatrywane tylko w komorze reaktora (Ω_R).

Sformułowanie problemu w 2D, dane materiałowe oraz warunki brzegowe. Ze względu na geometrię układu SHS, model zostanie zaimplementowany w 2D. Wymiary domeny obliczeniowej są na Rys. 5-15.

Rys. 5-15 Wymiary domeny obliczeniowej dla SHS do przykładowego projektu COMSOLa.

W układzie występują trzy materiały, których właściwości muszą zostać zdefiniowane. W przypadku ciał stałych – złoża oraz stolika – przyjmiemy uproszczenie, że ich właściwości są stałe (Tab. 5-4).

	Gęstość (kg/m³)	Pojemność cieplna (J/(kg·K))	Przewodnictwo cieplne (W/(m·K))
Złoże	1990	1000	2
Stolik	2203	703	1.38

Tab. 5-4 Parametry materiałowe ciał stałych.

Założymy że reakcja SHS przebiega w atmosferze obojętnego gazu, którego większość właściwości jest zdefiniowana jako funkcje analityczne temperatury (Tab. 5-5).

Tab. 5-5 Właściwości gazu dane wzorami

Lepkość dynamiczna (Pa·s)	$5.20 \cdot 10^{-6} + 4.43 \cdot 10^{-8} T - 7.89 \cdot 10^{-12} T^2$
Pojemność cieplna (J/(kg·K))	$895.93 + 0.0115T + 2.59 \cdot 10^{-4}T^2$
Przewodnictwo cieplne (W/(m·K))	$-0.0070 + 1.69 \cdot 10^{-4} T - 2.29 \cdot 10^{-7} T^2 + 1.70 \cdot 10^{-10} T^3$

Gęstość gazu w funkcji temperatury zostanie zaimplementowana jako funkcja interpolacyjna w oparciu o znane wartości dla wybranych temperatur (Tab. 5-6).

Temperatura (°C)	Gęstość (kg/m ³)
280	1.378
300	1.284
320	1.203
340	1.132
360	1.069
400	0.9622
500	0.7696
600	0.6413
700	0.5497
800	0.4809
900	0.4275
1000	0.3848

Tab. 5-6 Gęstość gazu w funkcji temperatury.

Warunki brzegowe dla przepływu obojętnego gazu zestawiono w tabeli (Tab. 5-7). Do komory wlatuje gaz o zadanej prędkości, natomiast na wylocie zdefiniowane jest jego ciśnienie. Temperatura wpływającego i wypływającego gazu jest równa temperaturze otoczenia.

Tab.	5-7	Warunki	brzegowe	dla	równań	Naviera-	-Stokesa

Wlot	<i>v</i> = 0.04 m/s	$T = T_{amb} = 300 \text{ K}$
Wylot	<i>p</i> = 1 atm	$T = T_{amb} = 300 \text{ K}$

Wymiana ciepła pomiędzy złożem a obojętnym gazem zachodzi na drodze konwekcji i promieniowania. Konieczne jest zdefiniowanie strumienia ciepła na granicy tych dwóch domen, który będzie sumą członu konwekcyjnego i promieniowania (por. (1.80)

$$q_1 = -h_n(T - T_{amb}) - \varepsilon \sigma (T^4 - T_{amb}^4), \qquad (5.104)$$

gdzie h_n – współczynnik przenikania ciepła, ε – emisyjność ciała, σ – stała Boltzmanna. Na fragmencie powierzchni złoża należy zdefiniować źródło ciepła reprezentujące zapłon, który będzie aktywny przez określony (krótki) czas:

$$q_2 = 10^6 \text{ W/m}^2$$
, $t < 10 \text{ s.}$ (5.105)

Wartości parametrów kinetycznych reakcji (równanie (5.97)) wraz z parametrami konwekcji i promieniowania zestawiono w tabeli (Tab. 5-8).

Tab. 5-8 Parametry kinetyczne reakcji oraz konwekcji i promieniowania.

Rząd reakcji, n (-)	3.55
Stała szybkości, k _r (m/s)	88
Energia aktywacji, <i>E</i> _a (kJ/mol)	35
Współczynnik wnikania ciepła, h _n (W/(m ² ·K))	22
Emisyjność ciała, ε (-)	0.7

Efekt energetyczny reakcji SHS, ΔH_r , który został wyznaczony w postaci funkcji interpolacyjnej na podstawie równań (5.101)–(5.102) zestawiono w tabeli (Tab. 5-9).

Temperatura (K)	ΔH_r (J/kg)
328	1015101
428	1016285
528	1016880
628	1017638
728	1019158
828	1021985
908	1025543
918	1026084
923	1247523
928	1248006
1028	1258149
1128	1266709
1228	1273731
1328	1279254
1375	1280968

Tab. 5-9 Efekt energetyczny reakcji SHS w funkcji temperatury.

Rozwiązanie:

- 1. Uruchom program COMSOL Multiphysics i wybierz *Model Wizard*. Jako *Space Dimension* wybierz 2D.
- W oknie Select Physics, dodaj 3 interfejsy: Laminar Flow (spf), Heat Transfer in Solid (ht) oraz General Form PDE. W ostatnim z nich zmień nazwę zmiennej na nu oraz jednostkę członu źródłowego na 1 (bo stopień przereagowania nu jest wielkością bezywiarową).

Search	n General Form PDE (g)	
AC/DC Acoustics	Dependent Variables	
Chemical Species Transport	Field name:	nu
Single-Phase Flow	Number of dependent variables:	1
Laminar Flow (spf)	Dependent variables:	nu
Heat Transfer		
Heat Transfer in Fluids (ht)		
Electromagnetic Heating		
 Mathematics 		• =
U PDE Interfaces		×
Δυ Coefficient Form PDE (c) Δυ General Form PDE (a)	Units	
∆u Wave Form PDE (wahw)	Dependent variable quantity	
Jav Weak Form PDE (w)	Dimensionless (1)	
D Au Lower Dimensions	- Source term quantity	
oDE and DAE Interfaces	None	•
© Optimization and Sensitivity ² Classical PDEs	Unit:	
Deformed Mesh	1	
Wall Distance (wd)		
Carvinnear Coordinates (CC)		
Add		

- 3. W sekcji *Study* wybierz *Time Dependent* i zatwierdź klikając *Done*.
- 4. Zdefiniuj parametry występujące w modelu, wprowadzając do tabeli *Parameters*, tak jak na poniższej grafice.

Model Builder Image: State of the st	Setting: Parameter	S s eters		~ I
Materials Materials Component 1 (comp 1) E Definitions ✓ Geometry 1 Seometry 1 Wall 1 ✓ Fluid Properties 1 Definitial Values 1 Wall 1 ✓ Heat Transfer in Solids (ht) Solid 1 Definitial Values 1	Name	Expression	Value	Description
	n	3.55	3.55	reaction order
	kr	88	88	preexponent
	E0	35[kl/mol]	35000 J/mol	Activation energy
	Tamb	300[K]	300 K	ambient temperature
	Eps	0.7	0.7	radiation heat loss
	hn	22 [W/m^2/K]	22 W/(m ² ·K)	conductive heat transfer

5. Zdefiniuj funkcję interpolacyjną, **dHr**, w *Component 1*, która będzie zwracała ciepło reakcji w zależności od temperatury na podstawie danych z tabeli (Tab. 5-9). Wprowadź odpowiednie jednostki funkcji i argumentów, oraz wybierz sposób interpolacji i ekstrapolacji jako *Linear*.

Model Builder * *	Settings		- 1	Graph	iics											~ 1
← → ↑ ↓ ₩ • Ⅲ Ⅲ •	Interpolation			QQ	א 🗄 🛄 📰	🖾 🚍										
A S Analiza typu multiphysics - proces SHS - implementacia 5.3.mph (root	Can Plot Create Plot															10
4 🗊 Global Definitions									dHr(t)) (J/kg)						-
Pi Parameters	Label: Reaction Heat						_	_		_				_	_	
Materials				×10.	-											
Component 1 (comp 1)	 Definition 												-			
A E Definitions	Data annual Local	table		1.2	:6-							-	-			-
Reaction Heat (dHr)	Cold Dource.										-					
[34] Boundary System 1 (sys1)	Function name: dHr			1.2	4						_					
View 1		(4)														
A Geometry I		1(t)		1.7	2											
Materials	328	1015101.048	^	4.4	*											
 Caminar Plow (sp) Child Desception 1 	428	1016284.655			-											
Pluid Properties 1	528	1016879.68		1.	2											
Rep Mart 1	628	1017637.892														
(Divert Terrefer in Calida (ba)	728	1019157.603		1.1	8-											
Colid 1	828	1021984.711														
P loitial Valuer 1	908	1025543.463		5 1.1	6											-
P Thermal Inculation 1	918	1026084.375		3												
4 Au General Form PDF (a)	923	1247523.308		£ ,,	4											
General Form PDF 1	928	1248005.54		음 ***	*											
E Zero Flux 1	1028	1258149.144														
Partial Values 1	1128	1266709.274		1.1	2											
A Multiphysics	1228	1273730.751														
A Mesh 1	1328	1279253.847		1	1											-
4 nd Study 1	1375	1280967.855														
Step 1: Time Dependent				1.0	18-											
🗈 🍓 Results	1 + -x / m m	1														
	Define primitive fur	iction		1.0	6											
	Real Providence of the second	Test miles		1.0												
	Primitive function name	s inclupteri														
				1.0	14											
	Denne inverse rund	aon														
	Inverse function name:	int1_inv		1.0	2						-					
	C					1	-									
	 Interpolation and E: 	drapolation			300	400	500	600	700	800	900	1000	1100	1200	1300	1400
											~					
	Interpolation: Linear		•	Marcon	Progress Log											
	Extrapolation: Linear			message	is riogress Log	1										
				6												
	▼ Units			COMSOL	Multiphysics 5.3.0.316	5										
				Saved file	E:\P2. Modelling of S	HS process\PO	DRĘCZNIK M	ODELOWANI	E\Analiza ty	ypu multiph	sysics - proce	Is SHS - imple	mentacja 5.3.	mph		
	Arguments: K															
	Function: J/kg															
1																

6. Zdefiniuj kolejną funkcję interpolacyjną, **frho**, która będzie zwracała gęstość gazu w zależności od temperatury na podstawie danych z tabeli (Tab. 5-6). Wprowadź odpowiednie jednostki funkcji i argumentów, oraz wybierz sposób interpolacji i ekstrapolacji jako *Linear*.

 Korzystając z danych zawartych tabeli (Tab. 5-5), zdefiniuj pozostałe właściwości gazu – lepkość dynamiczną, pojemność cieplną oraz przewodnictwo – jako funkcje analityczne – o nazwach fmu, fCp oraz fK. Wszystkie zależności w tabeli (Tab. 5-6) są funkcjami temperatury (K).

	Settings		~ 1	
Analiza typu multiphysics - proces SHS - implementacja 5.3.mph (root Global Definitions Pi Parametes St Materials	Call Plot Create Plot	vity	P	NCT) (Wimko)
▲ ③ Component 1 (comp 1) ▲ ■ Definitions ∴ Reaction Heat (dHr) ∴ Got dentity (fden)	Definition	T 2.20+-7*T0.2 - 1.20+-10*T0		0.19
Cas dynamic viscosity ((mu)) Cas dynamic viscosity ((mu)) Cas Heat Capacity ((Cp)) Cas Gas Conductivity ((K))	Arguments: T Derivatives: Automatic		•	0.17- - 0.16-
View 1 A Geometry 1 Materials Amint Flow (spf)	Periodic Extension Units	1		0.15-
Fluid Properties 1 Fluid Values 1 Fluid Values 1 Fluid Values 1 Fluid Values 1 Fluid Transfer in Solids (ht)	Function: W/m/K	J		
Solid 1 Initial Values 1 Thermal Insulation 1	Plot Parameters Argument	Lower limit	Upper limit	
Los General Form PDE 1 Concernent PDE 1	T	300	1300	0.09
Age Handwey Hyster Age Alesh 1 Age Study 1 Markets Estime Dependent P → Results	↑↓⊒			0.06

 Wykonaj geometrię 2D reprezentującą domeny obliczeniowe, zgodnie z wymiarami przedstawionymi na rysunku (Rys. 5-15). Najłatwiej ją wykonać przy pomocy trzech, odpowiednio ustawiony prostokątów. Linię potrzebną do zdefiniowania zapłonu, można wykonać przy pomocy *Line Segment.*

9. Zdefiniuj materiał w projekcie. Dodać trzy *Blank Materials* i nadaj im nazwy: **Gas**, **Mg2Si** oraz **Stolik**. W każdym z materiałów należy wybrać poprawną domenę, do której jest dany materiał

przypisany. W przypadku materiału **Gas**, jako właściwości trzeba podać odpowiednio: **frho(T)**, **fmu(T)**, **fK(T)** oraz **fCp(T)**. W polu *Ratio of specific heats* wprowadź **1.4**. W przypadku **Mg2Si** oraz **Stolik** wprowadź dane zawarte w tabeli (Tab. 5-5). Jeśli program będzie wymagał zdefiniowania *Dynamic Viscosity* dla nich, należy zmodyfikować interfejs *Laminar Flow*, tak aby dotyczył jedynie komory reaktora.

10. Zdefiniuj równania dla przepływu obojętnego gazu. W węźle *Laminar Flow* zmieniamy *Compressibility* na **Weakly compressible flow**, oraz upewniamy się że ta fizyka będzie rozpatrywana tylko w domenie reaktora. Kolejno dodaj warunki brzegowe na wlocie (*Inlet*) i wylocie (*Outlet*) reaktora, zgodnie z danymi w tabeli (Tab. 5-7). Warunek *Inlet* należy zdefiniować na lewym brzegu (*x*=0), a warunek *Outlet* na prawym brzegu (*x*=5).

11. W następnych krokach wprowadzimy ustawienia do interfejsu opisującego transport ciepła (*Heat Transfer in Solids*). Domyślnie zdefiniowany jest węzeł *Solid 1*. Dodaj nowy węzeł *Fluid 1*. Do węzła *Fluid 1* przypisz domenę 2 (reprezentującą Gas). Parametry wymagane do obliczeń transportu ciepła w całej domenie są pobierane automatycznie dla materiałów. Domyślny warunek brzegowy (*Thermal Insulation 1*) zastąp warunkiem *Temperature 1* i przypisz mu temperaturę otoczenia (Tamb) do wszystkich zewnętrznych brzegów układu.

Model Builder * #	Settings •	Graphics
	Temperature	Q, Q, Q, ⊕ ⊞ ↓ ▼ ∅ ⊕ ■ □ ⊕ ⋈ ≝ ≝ ≝ ⋈ ∞ ∎ □ □ □ □ □ □ = □
Analiza typu multiphysics - proces SHS - implementacja 5.3.mph (root Golobal Definitions Pi Parameters	Label: Temperature 1	4
Materials Gomponent 1 (comp1)		
A E Definitions	Selection: Manual	
Reaction Heat (dHr)	(m) 1 5 +	3.5
🔨 Gas density (frho)	2 -	
Gas dynamic viscosity (fmu)	Arthur 3 P. M	
Gas Heat Capacity (fCp)	Active 5	
G Gas Conductivity (fK)	12	3
Boundary System 1 (sys 1)	14	
View 1		
A 🖂 Geometry 1	a considered Contribution	-
Kectangle 1 (r1)	V Override and contribution	2.0
Rectangle 2 (r2)	Equation	
Line Segment 1 (/s 7)	▼ Temperature	
Form Union (fin)		2
A 🚦 Materials	Temperature:	
Is Gas (mot1)	T ₀ User defined • 10	
Mg2Si (mat2)	Test	
Stolik (mat3)	MHO K	1.5
A set Laminar Flow (spf)		
 Huid Properties 1 		
Provide a state of the state of		
line in the second seco		
Context 1		
Heat Transfer in Solids (ht)	•	
Solid 1	v	0.5
Initial Values 1		
P Thermal Insulation 1		
Fluid 1		
Temperature 1		
Δυ General Form PDE (g)		(m)
General Form PDE 1		-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

12. Aby zdefiniować konwekcję i promieniowanie, dodaj węzeł Boundary Heat Source 1 i wybierz brzegi pomiędzy złożem a komorą reaktora. W sekcji Heat Source wybierz General Source i w polu poniżej wpisz: -hn*(T-Tamb) - sigma_const *Eps*(T^4-Tamb^4). Stała Boltzmanna, jest zdefiniowana w COMSOLu jako sigma_const, dlatego nie musieliśmy jej wprowadzać do parametrów modelu.

13. Kolejnym warunkiem brzegowym będzie zapłon. Dodaj węzeł Boundary Heat Source 2. W oknie graficznym wybierz segment na lewym brzegu złoża Mg₂Si, zdefiniowanym wcześniej za pomocą Line Segment. Ponieważ zapłon ma być warunkiem działającym tylko przez określony czas, wartość strumienia będzie wyrażona za pomocą wyrażenia logicznego: (t<10)*1E6.</p>

14. Zdefiniuj źródło ciepła w objętości złoża Mg₂Si za pomocą węzła *Heat Source* 1. Jako wartość źródła wprowadź: mat2.def.rho*dHr(T)*nut. Ponieważ gęstość Mg₂Si jest zdefiniowana w obrębie materiału a nie jako zmienna, korzystamy z zapisu, który bezpośrednio odwołuje się do właściwości materiału: mat2.def.rho (materiał 2, definicja, parametr rho). Symbol nut

oznacza pierwszą pochodną po czasie zmiennej **nu** (stopnia przereagowania), która jest obliczana w interfejsie *General Form PDE*.

15. Zdefiniuj przebieg reakcji SHS w interfejsie General Form PDE, która zachodzi w domenie złoża Mg₂Si. Analizując (5.97) możemy zauważyć, że w równaniu opisującym reakcję SHS, nie występuje strumień, tylko człon źródłowy. W związku z tym należy odpowiednio: wyzerować obie składowe strumienia oraz wprowadzić człon źródłowy: (1-nu)^n*kr*exp(-E0/R_const/T). Damping or Mass coefficient ustaw na 1. Ponieważ reakcja SHS zachodzi tylko w domenie złoża, oraz produkt nie może opuścić tej domeny, domyślny warunek brzegowy Zero Flux 1 nie wymaga modyfikacji.

Model Builder	Settings •••	Graph	ics		_										~ 8
← → 1 ↑ ★ • II II II •	General Form PDE	QQ	a 👳 🖭 📋	A. 6	9 🛥 🔳 e		0.00	1 101 40		101					
Analiza typu multiphysics - proces SHS - implementacja 5.3.mph (r ^ A Global Definitions	Label: General Form PDE 1	4	m	_	_	_	_	-	-		_	_		_	٠
Pi Parameters	 Domain Selection 	· · · ·													
Materials															
 Component I (comp I) 	Selection: All domains														
 Dennitions Reaction black (dbl) 	The second secon	3.5													H
S. Gas density (frho)	1 (not approxime)														
Gas dynamic viscosity (fmu)	2 (not applicative)	(I													
Gas Heat Capacity (/Cp)	Active 3														
Gas Conductivity (%)	ф	3													
Boundary System 1 (sys 1)															
View 1															
4 🖄 Geometry 1															
Rectangle 1 (r1)	Override and Contribution	2.5							_			_			
Rectangle 2 (r2)	* Fouation														
Rectangle 3 (r3)															
Line Segment 1 (Is 1)	Show equation assuming:	1 2													H
Form Union (fin)	Study 1, Time Dependent .	-													
A 11 Materials		1													
Use Gas (matr)	$e_a \frac{\partial^2 f U}{\partial x^2} + d_a \frac{\partial f U}{\partial a} + \nabla \cdot \Gamma = f$														
Stallk (mat2)	dt- ov	1.5													H
4 In Laminas Flow (ref)	$\nabla = \left[\frac{\partial}{\partial r}, \frac{\partial}{\partial r}\right]$														
Properties 1	'dx'dy'														
P Initial Values 1	· Conception flow														
E Wall 1	· Conservative Flux	1													F
Inlet 1	- 0 x														
Outlet 1	T 0 y m	1													
Heat Transfer in Solids (ht)															
Solid 1	▼ Source Term	0.5													
Initial Values 1															
Thermal Insulation 1	f (1-nu)^n*kr*exp(-E0/R_const/1) 1														
Fluid 1	- Damping as Mars Coefficient	-													-
Imperature I Deventure I	Damping or wass coefficient	° I													cm
Boundary meat source 1 Boundary Heat Course 2	da 1 s	I - ⊁	0.5	6	0.5	5	16	5	50	2	26	4	45	L.	
Heat Source 1			-9.5	~	0.5		4.5		6-0		3.5	-	4.0	2	5.5
4 Au General Form PDE (a)	 Mass Coefficient 	Message	Progress	Log											* # X
General Form PDF 1															
E Zero Flux 1	e9 0 5.	6													
Initial Values 1		COMSOL	Multiphysics 5.	3.0.316	1000000										

16. Utwórz siatkę obliczeniową korzystając z predefiniowanych ustawień w *Physics-controlled Mesh*. Jako rozmiar wybierz **Finer**. Kliknij *Build All*.

 Rozwiń Study 1, wybierz Step 1: Time Dependent i w polu Output times wprowadź: range(0,1,60) 90 120 150. Zaznacz opcję wyświetlania wyników w trakcie obliczeń – Results While Solving. Uruchom symulację klikając Compute.

18. Domyślnie zostanie wygenerowany wykres prędkości. Utwórz wykresy dla: ciśnienia (*p*), temperatury (*T*) i stopnia przereagowania (*nu*).

Zadanie 1. Przeanalizuj otrzymane wykresy pod kątem ewolucji procesu SHS. Utwórz wykres obrazujący położenie frontu reakcji (**nut**). Wygeneruj wykresy w postaci plików .gif.

Zadanie 2. Analizując odczyty termopar w punktach, jesteśmy w stanie uzyskać istotne informacje o kinetyce procesu SHS. Wprowadź reprezentację takich termopar w postaci dwóch *Domain Point Probe* (*Definitions* \rightarrow *Probes* \rightarrow *Domain Point Probe*) w lokalizacjach x=2, y=1.4 oraz x=2, y=1.4.

Model Builder *	Settings ••	Graphics Convergence Plot 1 v I
←→↑↓∓•ⅢⅢ•	Point Probe Expression	
Global Definitions Pi, Parameters Sit Materials Society (comp1)	Update Kesults Label: Point Probe Expression 1	
▲ ■ Definitions	Expression Expression	3.5
C Gas Heat Capacity (fCp) C Gas Conductivity (fC) C Gas Conductivity (fC) C Gas Conductivity (fC) C G Domain Point Probe 1 F Point Probe Expression 1 (ppb 7)	T Table and plot unit V	
Boundary System 1 (sys 1) Boundary System 1 (sys 1) Geometry 1 Rectangle 1 (r1)	Description: Temperature	2.5
Rectangle 2 (r2) Rectangle 3 (r3) Line Segment 1 (tr 1) Form Union (fin)	> Table and Window Settings	27
		1.5
 Caminal How Sp() Image: Insolute (h) ▲ Seneral Form PDE (g) ■ General Form PDE 1 ™ Zero Flux 1 		r
initial Values 1 ♣ Mutilphysics ▲ Mesh 1 ▲ ∿⊗ Study 1		
Step 1: Time Dependent Arr Solver Configurations Esolution 1 (sol) Esolution 1 (sol)		0%

Przelicz ponownie projekt aby uzyskać dane w próbnikach *Domain Point Probes*.

Zadanie 3* Zaimplementuj przedstawiony poniżej projekt w geometrii 3D. Przyjmij, że złoże Mg₂Si jest walcem o średnicy 2 cm, głębokość komory reaktora wynosi 4 cm. Pozostałe wymiary przyjmij takie jak w projekcie 2D. Porównaj wyniki otrzymane z modeli 2D i 3D.

Bibliografia

- 1. J. Lis, Spiekalne proszki związków kowalencyjnych otrzymywane metodą samorozwijającej się syntezy wysokotemperaturowej (SHS), Polski Biuletyn Ceramiczny, tom. 6, 1994.
- D. Kata, Zastosowanie azotku krzemu do otrzymywania tworzyw kowalencyjnych metodą samorozwijającej się syntezy wysokotemperaturowej (SHS), Polski Biuletyn Ceramiczny, tom. 94, 2006.
- 3. H.E. Kissinger, "Reaction kinetics in differential thermal analysis", Anal. Chem., tom. 29 nr 11, 1957, s 1702–1706.

- 4. A. S. Mukasyan, C. E. Shuck, Kinetics of SHS Reactions: A Review, International Journal of Self-Propagating High-Temperature Synthesis, tom. 26 nr 3, 2017, s145–165.
- 5. B. Sun, S. Li, H. Imai, J. Umeda, K. Kondoh, Synthesis kinetics of Mg 2Si and solid-state formation of Mg-Mg 2Si composite, Powder Technol., tom. 217, 2012, s 157–162.

5.8. Naprężenia w materiałach

Wprowadzenie. W tym rozdziale opiszemy przykładowe zastosowania środowiska COMSOL do problemów naprężeń i odkształceń ciał stałych traktowanych jako ośrodki ciągłe. Ograniczymy się tylko do ośrodków idealnie sprężystych.

Odkształcenia (ang. *strain*). Pod wpływem przyłożonych sił ciała stałe ulegają odkształceniom, czyli zmieniają kształt i objętość. Następuje wtedy przemieszczenie punktów ciała. Dlatego podstawą do sformułowania równań teorii sprężystości jest wprowadzenie pojęcia *pola wektorowego przemieszczeń*, $\mathbf{u}(x,y,z,t)$, które w ogólności zależy od położenia punktu (*x*,*y*,*z*) oraz czasu *t* – Rys. 5-16. Nas interesować będą tylko przypadki stacjonarne, dlatego nie będzie w równaniach zależności od czasu, zatem pole przemieszczeń będzie tylko funkcją położenia $\mathbf{u}(x,y,z)$.

Rys. 5-16. Odkształcenie ciała opisujemy polem wektorowym odkształceń **u**. W każdym punkcie wektor ten może być inny. Pole wektorowe $\mathbf{u}(x,y,z)$ jest podstawą do zdefiniowania tensora odkształceń.

Teoretycznie można sformułować równania teorii sprężystości tylko w oparciu o pole przemieszczeń, ale w praktyce wygodniej jest wprowadzić kolejne pojęcie, które opisuje odkształcenie ośrodka, czyli tzw. *tensor odkształceń*²¹ oznaczany symbolem $\boldsymbol{\varepsilon}$. W przypadku, gdy odkształcenia są nieduże, to w układzie kartezjańskim (prostokątnym) składowe tego tensora są równe

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \quad i, j = 1, 2, 3,$$
(5.106)

gdzie użyliśmy notacji $x_1 = x$, $x_2 = y$, $x_3 = z$. Notacja w której numerujemy składowe wektora jest wygodniejsza do ogólnych rachunków, ale trzeba pamiętać, że składowe wektora przemieszczenia są różnie oznaczane w zależności od kontekstu. Mamy zatem różne oznaczenia

$$\mathbf{u} = (u_1, u_2, u_3) = (u_x, u_y, u_z) = (u, v, w).$$
(5.107)

Okazuje się że wielkości zdefiniowane wzorami (5.106) stanowią faktycznie składowe tensora, którego reprezentacja macierzowa w układzie prostokątnym ma postać (dwie formy zapisu):²²

²¹ Spotyka się też określenie – tensor deformacji. W literaturze angielskiej jest to *strain tensor*.

²² Tensor drugiego rzędu można reprezentować macierzą, ale nie oznacza to, że każda tablica liczb jest tensorem. Aby podać macierz tensora musimy najpierw wybrać jakąś bazę w przestrzeni, na przykład w 3D może to być baza: \mathbf{b}_1 =(1, 2, 0), \mathbf{b}_2 =(0, 1, 1), \mathbf{b}_3 = (2, 3, 4). W tej konkretnej bazie elementy macierzy reprezentującej tensor będą miały pewne wartości, ale w innej bazę te wartości będą na ogół inne. Wielkość będzie tylko wtedy

$$\boldsymbol{\mathcal{E}} = \begin{bmatrix} \mathcal{E}_{11} & \mathcal{E}_{12} & \mathcal{E}_{13} \\ \mathcal{E}_{21} & \mathcal{E}_{22} & \mathcal{E}_{23} \\ \mathcal{E}_{31} & \mathcal{E}_{32} & \mathcal{E}_{33} \end{bmatrix} \quad \text{lub} \quad \boldsymbol{\mathcal{E}} = \begin{bmatrix} \mathcal{E}_{xx} & \mathcal{E}_{xy} & \mathcal{E}_{xz} \\ \mathcal{E}_{yx} & \mathcal{E}_{yy} & \mathcal{E}_{yz} \\ \mathcal{E}_{zx} & \mathcal{E}_{zy} & \mathcal{E}_{zz} \end{bmatrix}.$$
(5.108)

Z definicji (5.106) wynika bezpośrednio, że jest to to tensor symetryczny ($\varepsilon_{ij} = \varepsilon_{ji}$):

$$\varepsilon_{xy} = \varepsilon_{yx}, \quad \varepsilon_{xz} = \varepsilon_{zx}, \quad \varepsilon_{yz} = \varepsilon_{zy}, \quad (5.109)$$

dlatego zawiera on tak naprawdę sześć niezależnych składowych, a nie dziewięć. Należy jeszcze raz podkreślić, że tensor odkształcenia jest funkcją położenia punktu w ośrodku, $\mathcal{E} = \mathcal{E}(x,y,z)$, dlatego liczbowe wartości składowych macierzy (5.108) są na ogół różne w różnych punktach ciała.

Rys. 5-17. Dwuwymiarowe odkształcenia małego elementu ośrodka ciągłego i interpretacja składowych \mathcal{E}_{xx} oraz \mathcal{E}_{xy} tensora odkształcenia.

Poszczególne składowe tensora odkształcenia można zinterpretować geometrycznie, co ilustruje Rys. 5-17, na którym pokazano odkształcenie małego prostokątnego elementu $\Delta x \times \Delta y$ ośrodka (dla prostoty ilustracja jest w geometrii 2D). Jak widać składowa

$$\mathcal{E}_{xx} = \frac{1}{2} \left(\frac{\partial u_x}{\partial x} + \frac{\partial u_x}{\partial x} \right) = \frac{\partial u_x}{\partial x}$$
(5.110)

przedstawia względną zmianę długości w kierunku *x*, podobnie ε_{yy} to względna zmiana długości w kierunku *y*, a suma kątów α i β , która przedstawia odkształcenie ścinające wynosi $\approx 2\varepsilon_{xy}$.

Ponieważ $\alpha + \beta \approx 2\varepsilon_{xy}$, to w mechanice odkształceń często wprowadza się oznaczenie $\gamma_{xy} = 2\varepsilon_{xy} = \frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x}$. Podobnie dla pozostałych składowych:

$$\gamma_{xy} = \gamma_{yx} = 2\varepsilon_{xy} = \frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x}, \quad \gamma_{xz} = \gamma_{zx} = 2\varepsilon_{xz} = \frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x}, \quad \gamma_{yz} = \gamma_{zy} = 2\varepsilon_{yz} = \frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y}. \tag{5.111}$$

tensorem, jeżeli przejście od macierzy tensora w pierwszej bazie do macierzy w drugiej bazie odbywa się wg ściśle określonych reguł transformacji (podobnie jak dla macierzy odwzorowania liniowego $L: \mathbb{R}^n \to \mathbb{R}^n$).

Używając tych oznaczeń składowe tensora odkształcenia zapiszemy następująco

$$\boldsymbol{\mathcal{E}} = \begin{bmatrix} \boldsymbol{\mathcal{E}}_{xx} & \frac{1}{2}\boldsymbol{\gamma}_{xy} & \frac{1}{2}\boldsymbol{\gamma}_{xz} \\ \frac{1}{2}\boldsymbol{\gamma}_{yx} & \boldsymbol{\mathcal{E}}_{yy} & \frac{1}{2}\boldsymbol{\gamma}_{yz} \\ \frac{1}{2}\boldsymbol{\gamma}_{zx} & \frac{1}{2}\boldsymbol{\gamma}_{zy} & \boldsymbol{\mathcal{E}}_{zz} \end{bmatrix}.$$
(5.112)

Naprężenia (ang. *stress*). Rozkład molekuł w ciele nieodkształconym odpowiada stanowi równowagi cieplnej tego ciała, a ponadto wszystkie jego części znajdują się we wzajemnej równowadze mechanicznej. Podczas odkształcenia ciało zostaje wytrącone ze stanu równowagi, i w rezultacie pojawiają się w nim siły dążące do przywrócenia stanu równowagi. Siły te (wewnętrzne) zależą od odziaływań molekularnych w ciele. Zasadnicze znaczenie dla mechaniki odkształceń ma fakt, że siły oddziałujące między cząsteczkami są bliskiego zasięgu – ich bezpośrednie oddziaływanie rozciąga się wokół wytwarzającej je molekuły na odległość rzędu odległości międzymolekularnych. Jednakże w teorii sprężystości, jako teorii makroskopowej, rozpatrywane są odległości znacznie większe niż odległości między cząsteczkami w ciele, dlatego siły jakimi sąsiednie elementy działają na siebie traktuje się jako *siły powierzchniowe* (nie dotyczy to przypadków, gdy wraz z odkształceniem pojawiają się makroskopowe siły elektryczne, na przykład w piezoelektrykach). Natomiast zewnętrzne siły (takie jak grawitacja) przenikają cały ośrodek, stąd siły te nazywamy *siłami objętościowymi* (jeżeli są one wprost proporcjonalne do masy elementu ośrodka, to używa się też określenia – *siły masowe*).

Niestety pole naprężeń w odkształconym ciele nie może być opisane tylko przy pomocy zwykłego pola wektorowego sił. Zauważył to już August Cauchy formułując podstawy mechaniki ośrodków ciągłych na pocz. XIX w. Problem polega na tym, że *siła powierzchniowa* T działająca w punkcie P = (x,y,z) na dowolną wyobrażoną powierzchnię w ciele przechodzącą przez P zależy także od wektora normalnego n do tej powierzchni. Inaczej mówiąc, jeżeli wyobrazimy sobie dwie takie powierzchnie przecinające się w punkcie P pod niezerowym kątem (np. prostopadle), to siły te będą na ogół różne, $T_1 \neq T_2$. Ale Cauchy udowodnił, że zależność siły T od wektora normalnego w danym punkcie ciała jest liniowa. Oznacza to, że (podobnie jak dla odkształceń) odziaływanie w odkształconym ciele można opisywać przy pomocy pewnego pola tensorowego, nazywanego *tensorem naprężeń Cauchy'ego* (w skrócie *tensor naprężeń*) oznaczanym symbolem σ , którego składowe w układzie prostokątnym reprezentje macierz 3 x 3:

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}, \quad \boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xy} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix}, \quad (5.113)$$

gdzie użyliśmy dwóch notacji (indeksy 1,2,3 lub symbole *x*, *y*, *z*). Okazuje się ponadto, że tensor naprężeń jest symetryczny, $\sigma_{ij} = \sigma_{ji}$, co wynika z zasady zachowania momentu pędu, dlatego zawiera on tak naprawdę sześć niezależnych składowych:

$$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \sigma_{xy}, \sigma_{xz}, \sigma_{yz}.$$
(5.114)

Składowe tensora naprężeń można interpretować w odniesieniu do odkształcenia małego elementu ośrodka jako siły (na jednostkę powierzchni) ściskające/rozciągające lub ścinające.

Możemy teraz połączyć opis geometryczny (odkształcenia) z fizycznym (naprężenia) stosując II zasadę dynamiki Newtona (w naszym przypadku – wariant statyczny, czyli równowaga sił i momentów sił). Wynikają stąd podstawowe równania mechaniki ciał sprężystych (*równania Cauchy'ego*):²³

$$\begin{cases} \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} + b_{x} = 0, \\ \frac{\partial \sigma_{yx}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z} + b_{y} = 0, \\ \frac{\partial \sigma_{zx}}{\partial x} + \frac{\partial \sigma_{zy}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} + b_{z} = 0, \end{cases}$$
(5.115)

gdzie $\mathbf{b} = (b_x, b_y, b_z)$ jest zewnętrznym polem sił objętościowych/masowych.

Podobnie jak dla odkształceń tak i dla naprężeń w literaturze przedmiotu występują pewne alternatywne oznaczenia. Na przykład składowe tensora naprężeń (5.113) na przekątnej są czasami oznaczane pojedynczym indeksem, a dla składowych poza przekątną używa się też symboli τ_{ij} :

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{1} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{2} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{3} \end{bmatrix}, \quad \boldsymbol{\sigma} = \begin{bmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{z} \end{bmatrix}.$$
 (5.116)

Oczywiście mamy symetrię: $\tau_{xy} = \tau_{yx}$, $\tau_{xz} = \tau_{zx}$, $\tau_{yz} = \tau_{zy}$.

Relacje konstytutywne. Dotychczasowe rozważania, a w szczególności równania (5.115), nie pozwalają jeszcze rozwiązać zagadnienia odkształcenia ciała sprężystego, nawet jeżeli znamy przyłożone siły zewnętrzne. Brakuje jeszcze konkretnych własności materiałowych dla danego ciała, bo przecież ciała o tym samym kształcie i tak samo przyłożonych siłach będą różnie się odkształcać, gdy będą na przykład wykonane ze stali czy z aluminium. Podstawowym pytaniem jest jak odkształcenia w ciele (ε) wpływają na jego wewnętrzne naprężenia (σ)? Inaczej musimy jeszcze znać zależność $\sigma = \sigma(\varepsilon)$. Taki właśnie związek nazwiemy *relacją konstytutywną*. W najprostszym przypadku (uogólnione *prawo Hooka*) jest to liniowa zależność pomiędzy składowymi tensora naprężeń i tensora odkształcenia:

$$\boldsymbol{\sigma} = \mathbf{C} : \boldsymbol{\varepsilon}, \quad \operatorname{czyli} \quad \sigma_{ij} = \sum_{k,l=1}^{3} C_{ijkl} \boldsymbol{\varepsilon}_{kl}.$$
 (5.117)

W wyrażeniu tym występuje tzw. *tensor sztywności* C, którego składowe C_{ijkl} dla *i,j,k,l*=1,2,3 nazywane są ogólnie *modułami sprężystości*. Łatwo policzyć, że jest ich 3⁴ = 81. No cóż, nie wygląda to za dobrze – wydaje się, że do opisania takiego ciała potrzebnych jest (w najogólniejszym przypadku) aż 81 stałych! Z ogólnych własności tensora naprężeń i odkształceń wynika jednak, że tensor sztywności musi wykazywać różne symetrie, co ostatecznie redukuje liczbę możliwych niezależnych stałych do 21.²⁴

²³ Tutaj podane są równania Cauchy'ego dla przypadku stacjonarnego. Ogólnie równania te opisują odkształcenia zależne od czasu, wtedy po prawej stronie równań (5.115) wystąpią jeszcze pochodne materialne pola wektorowego odkształceń (5.107), $\frac{D\mathbf{u}}{Dt} = \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}$. W oparciu o takie równania można na przykład analizować drgania sprężyste ciał o dowolnym kształcie, obliczyć fale dźwiękowe emitowane przez ciało, które zostało pobudzone, uzyskać częstości rezonansowe konstrukcji itd.

²⁴ Szczegółową analizę można znaleźć na przykład w książce I.I. Olchowski "Mechanika Teoretyczna", PWN,

Jeżeli ciało anizotropowe ma jakieś właściwe mu symetrie, wtedy występują dodatkowe związki między modułami sprężystości, i tym samym zmniejsza się liczba niezależnych modułów sprężystości. Na przykład można wykazać, że kryształ o sieci regularnej charakteryzują tylko trzy niezależne moduły sprężystości *C_{xxxx}, C_{xxyy}, C_{xyxy}*.²⁵

Ciała izotropowe mają jeszcze wyższą symetrię, gdyż tensor modułów sprężystości $\mathbb{C} = [C_{ijkl}]$ nie zależy od wyboru kierunku osi współrzędnych, co pozwala zredukować liczbę niezależnych parametrów do dwóch, tzw. *stałych Lamégo*, oznaczanych symbolami λ i μ . Tak więc sprężystość ciała izotropowego scharakteryzowana jest tylko dwiema stałymi. W praktyce jednak częściej posługujemy się dwiema innymi stałymi, które mają bezpośredni związek z pomiarami odkształcenie–przyłożona siła: modułem Younga *E* i współczynnikiem Poissona v. Można wyprowadzić związki pomiędzy stałymi Lamégo a tymi dwoma parametrami:

$$\nu = \frac{1}{2} \frac{3\lambda}{3\lambda + 4\mu}, \quad E = \mu \frac{3\lambda + 2\mu}{\lambda + \mu}.$$
(5.118)

Materiały izotropowe zazwyczaj są opisywane w bazach danych właśnie przy pomocy modułu Younga i współczynnika Poissona i dlatego przy nich zostaniemy. Typowe wartości modułu Younga w temperaturze T = 25 °C podane są w tabeli (Tab. 5-10). Należy traktować je jako szacunkowe, gdyż dokładne wartości mogą się zmieniać w zależności od mikrostruktury, domieszek itd.

żelazo (lane)	miedź	aluminium	ołów	polistyren (kryst.)	stal (A36)	mosiądz	drewno
100	110	68	13	2.5–3.5	200	106	9–12

Tab. 5-10 Przykładowe wartości modułu Younga E (GPa) wybranych materiałów.

Zbierając wszystkie omawiane zależności: symetrię tensora odkształcenia, symetrię tensora naprężeń, redukcję tensora sztywności w relacji konstytutywnej (5.117) do dwóch parametrów dla ciał izotropowych, można wyprowadzić następującą zależność σ od ε

$$\begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \sigma_{yz} \\ \sigma_{xy} \end{bmatrix} = \frac{1}{2v^{2} + v - 1} \begin{bmatrix} (v - 1)E & -vE & -vE & 0 & 0 & 0 \\ -vE & (v - 1)E & -vE & 0 & 0 & 0 \\ -vE & -vE & (v - 1)E & 0 & 0 & 0 \\ 0 & 0 & 0 & (2v - 1)E & 0 & 0 \\ 0 & 0 & 0 & 0 & (2v - 1)E & 0 \\ 0 & 0 & 0 & 0 & 0 & (2v - 1)E \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{yz} \\ \gamma_{zx} \\ \gamma_{xy} \end{bmatrix},$$
(5.119)

Zależność powyższą często też przedstawia się odwrotnie w formie ϵ od σ

Warszawa 1978, str. 465–467.

²⁵ Podobnie jak dla odkształceń i naprężeń, moduły sprężystości możemy numerować, np. C₁₂₁₃ lub indeksować symbolami osi układy współrzędnych, np. C_{xyxz}.

$$\begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{yz} \\ \gamma_{zx} \\ \gamma_{xy} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -v & -v & 0 & 0 & 0 \\ -v & 1 & -v & 0 & 0 & 0 \\ -v & -v & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1+v) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1+v) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1+v) \end{bmatrix} \begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \sigma_{yz} \\ \sigma_{zx} \\ \sigma_{xy} \end{bmatrix}.$$
(5.120)

Korzystając teraz z ogólnych równań (5.115) na naprężenia w ciele sprężystym (w stanie równowagi) w powiązaniu z równaniami konstytutywnymi dla ciała izotropowego (5.119), otrzymamy układ równań na tensor odkształcenia. Na przykład pierwsze równanie ma postać

$$(v-1)\frac{\partial \varepsilon_x}{\partial x} - v\frac{\partial \varepsilon_y}{\partial x} - v\frac{\partial \varepsilon_z}{\partial x} + (2v-1)\frac{\partial \gamma_{xy}}{\partial y} + (2v-1)\frac{\partial \gamma_{zx}}{\partial z} + \frac{2v^2 + v - 1}{E}b_x = 0.$$
(5.121)

Ponieważ współczynniki ε_i oraz γ_{ij} są wyrażone przez odpowiednie pochodne pola przemieszczeń, równania (5.111), zatem ostatecznie problem odkształcenia ciała sprężystego jest opisany układem równań różniczkowych cząstkowych liniowych drugiego rzędu na składowe pola przemieszczeń $\mathbf{u} = (u_x, u_y, u_z)$. Oczywiście używając środowiska obliczeniowego COMSOL nie musimy znać tych równań, gdyż środowisko ma te równanie wbudowane. Użytkownik dostarcza tylko parametry materiałowe, warunki brzegowe oraz specyfikuje jakie siły są przyłożone do ciała, a system samodzielnie rozwiązuje równania, dając jako wynik pole odkształceń i wewnętrznych naprężeń.

W modelowaniu naprężeń często obliczenia można zredukować do geometrii 2D. Wyróżnia się tutaj dwa przypadki: płaskie naprężenia i płaskie odkształcenia.

Przypadek płaskich naprężeń (ang. *plane stress case*). W tym przypadku wszystkie składowe naprężeń w kierunku osi *z* wynoszą zero:

$$\sigma_{yz} = \sigma_{xz} = 0 \xrightarrow{symetria} \sigma_{zy} = \sigma_{zx} = 0,$$

$$\sigma_{z} = 0,$$
(5.122)

Zatem

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{x} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{y} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{z} \end{bmatrix} = \begin{bmatrix} \sigma_{x} & \sigma_{xy} & 0 \\ \sigma_{yx} & \sigma_{y} & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \sigma_{x} & \tau_{xy} & 0 \\ \tau_{xy} & \sigma_{y} & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$
(5.123)

Można teraz wyrazić niezerowe składowe naprężeń poprzez składowe odkształceń lub na odwrót

$$\begin{cases} \sigma_{x} = \frac{E}{1-v^{2}}\varepsilon_{x} + \frac{vE}{1-v^{2}}\varepsilon_{y}, \\ \sigma_{y} = \frac{vE}{1-v^{2}}\varepsilon_{x} + \frac{E}{1-v^{2}}\varepsilon_{y}, \\ \tau_{xy} = \frac{E}{2(1+v)}\gamma_{xy}, \end{cases} \qquad \begin{cases} \varepsilon_{x} = \frac{1}{E}\sigma_{x} - \frac{v}{E}\sigma_{y}, \\ \varepsilon_{y} = -\frac{v}{E}\sigma_{x} + \frac{1}{E}\sigma_{y}, \\ \gamma_{xy} = \frac{2(1+v)}{E}\tau_{xy}. \end{cases}$$
(5.124)

Przypadek płaskich odkształceń (ang. *plane strain case*). Wyobraźmy sobie walec o średnicy znacznie mniejszej od jego długości (wysokości) – Rys. 5-18. Nie musi zresztą być to typowy walec – może być kształt, w którym każdy przekrój prostopadły do osi podłużnej jest taki sam. Jeżeli siły działają prostopadle od powierzchni bocznej, to można z dobrym przybliżeniem pominąć odkształcenia w

kierunku osi podłużnej. Sprowadza to problem 3D do 2D, w którym istotne są tylko odkształcenie w wybranym przekroju.

Rys. 5-18. Ilustracja przybliżenia typu płaskie odkształcenia.

W tym przypadku można przyjąć:

$$\varepsilon_z = \gamma_{vz} = \gamma_{zx} = 0, \quad \sigma_z \neq 0. \tag{5.125}$$

Wtedy relacja pomiędzy naprężeniem a odkształceniami przyjmie postać

$$\begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{bmatrix} = -\frac{E}{2v^{2} + v - 1} \begin{bmatrix} 1 - v & v & 0 \\ v & 1 - v & 0 \\ 0 & 0 & 1/2 - v \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{bmatrix}.$$
 (5.126)

Rozwiązanie:

- 1. Uruchom program *COMSOL Multiphysics* i wybierz *Model Wizard*. Jako *Space Dimension* wybierz 3D.
- 2. W oknie Select Physics wybierz interfejs Solid Mechanics (solid).

	Search Solid Mechanics (solid)	
Recently Used Transport of Diluted Species (tdr)	Dependent Variables	
∆u Gencal Form DDE (g) ∆u Gencal Form Boundary PDE (gb) ∆u Gencal Form Boundary PDE (gb) ∆u Centification Form DDE (c) ≩ AC/DC Ŋ Acoustics Field Flow ∰ Heat Flowder ∰ Heat Flowder ∰ Structural Mechanics ∰ Statut Mechanics ∰ Statut Mechanics ∰ Statut Mechanics	Diplacement field: Diplacement field compo	u ents v w
	Add	

3. W sekcji Study wybierz Stationary i zatwierdź klikając Done.

4. Zdefiniuj parametry występujące w modelu wprowadzając je do tabeli *Parameters*, tak jak na poniższej grafice.

 Utwórz geometrię. Kliknij prawym przyciskiem na Geometry 1 i z listy wybierz Block. W polach tekstowych Width, Depths oraz Height wprowadź odpowiednio: a, b oraz c. Kliknij Build Selected.

6. Kliknijmy węzeł *Linear Elastic Material 1*. W sekcji *Linear Elastic Material* zdefiniuj właściwości materiału. W sekcji *Young's modulus* i *Poisson's ratio* zmień sposób definiowania na *User defined* i wprowadź do pól: **E** i **wp**.

	Settings · · ·	
Obciązenie belki.mph (root) Global Definitions	Label: Linear Elastic Material 1	0
Pi Parameters	▼ Domain Selection	
Component 1 (comp 1)	Selection: All domains ~	0.1 m
Definitions Constraints Definitions Definitions Definitions Definitions Definitions Definitions Definitions Definitions Definitions Definitions	Attre	0.05
Initial Values 1 Mesh 1	Override and Contribution	N o
4 № Study 1 State 1: Stationary	Equation	
Results	Model Input	
	Coordinate System Selection	0.4
	▼ Linear Elastic Material	
	Nearly incompressible material	
	Solia mode:	
	Specify:	0.2 m
	Young's modulus and Poisson's ratio	
	Young's modulus:	
	E User defined •	
	Pa	z 0
	Poisson's ratio	y v x
	V User defined	
	wp 1	

7. Wprowadzić obciążenia i umocowania. Prawym przyciskiem kliknij *Solid Mechanics (solid)* i z listy wybierz *Fixed Constrained*. W oknie *Graphics* wybierz ścianę prostopadłościanu (*x*=0).

 Dodaj obciążenie. Prawym przyciskiem kliknij Solid Mechanics (solid) i z listy wybierz Boundary Load. W oknie Graphics wybierz górną ścianę prostopadłościanu (z = c). Zmień Load type na Total force. Wprowadźmy -F jako składową w kierunku z.

9. Utworz siatkę numeryczną. Kliknij węzeł *Mesh* 1. W sekcji *Mesh Settings* wybierz *Extra Fine* jako *Element size* i kliknij *Build All*.

10. Wybierz węzeł *Study 1* i kliknij przycisk *Compute*. Po wykonaniu obliczeń automatycznie zostanie wygenerowany wykres naprężeń von Misesa.

Model Builder	Settings	Graphics Q. Q. Q. B. U M M M M M M M A M A M A M A M A M A M	× 8
Obciążenie belki.mph (root) Global Definitions P Parameters	The store st	Surface: von Mises stress (N/m ²)	×10 ⁷
ISE Materials I a Component 1 (comp 1) ■ Definitions I Secondary 1	▼ Data Data see Study 1/Solution 1 (sol1) ▼ 第	0.1 m	
Block 1 (bik f) Bock 1 (bik f) Bock 1 (bik f) Bock 1 (bik f) Bock 1 (bik f) A deviation (fin) A deviation (fin)	 Title Plot Settings 	0.65	2
E Linear Elastic Material 1 Free 1 Sinitial Volues 1 Fixed Constraint 1	View Automatic	0.04 0.02 m	
Mesh 1	✓ Plot data set edges Color: Black Frame: Material (X × Z)	9.92	1.5
Data Sets Derived Values Hit Tables Stress (solid)	Color Legend	0.4	1
Report Reports	Show legends Show maximum and minimum values Show units	⁶² 5	
	Position Right • Text color: Black •		0.5
	Number Format Window Settings	y 1 0	

11. Dodaj wykres przemieszczenia. Prawym przyciskiem kliknij *Results* i z listy wybierz *3D Plot Group*. Kliknij prawym przyciskiem na utworzony węzeł i wybierz z listy *Surface*. W polu *Expression* wprowadź **solid.disp** i kliknij *Plot*.

Bibliografia

- 1. I.I. Olchowski "Mechanika Teoretyczna", PWN, Warszawa, 1978.
- 2. J.R. Taylor "Mechanika klasyczna", tom 1, PWN Warszawa, 2006.
- 3. J.R. Taylor "Mechanika klasyczna", tom 2, PWN Warszawa, 2006.
- 4. M. Ashby, H. Shercliff, D. Cebon, Inżynieria Materiałowa, tom 1, Galaktyka Łódź 2011.

5.9. Ładowanie/rozładowanie ogniwa litowo-jonowego

Wprowadzenie. Ogniwo litowo-jonowe, będące podstawą do budowy akumulatorów litowojonowych, wykorzystuje odwracalny proces interkalacji²⁶ jonów litu Li⁺ w ciałach stałych, które jednocześnie są przewodnikami elektronowymi (Rys. 5-19). Wynalezienie i komercjalizacja tego typu ogniw jest jednym z ważniejszych osiągnięć technologicznych XX wieku.²⁷ Baterie litowo-jonowe są obecnie stosowane w przenośnych urządzeniach elektronicznych powszechnego użytku (laptopy, telefony komórkowe, kamery cyfrowe, narzędzia warsztatowe (np. wiertarki, wkrętarki)), a także do napędu pojazdów z silnikiem elektrycznym. Wykorzystywane są również jako magazyny energii wpięte do sieci energetycznej, a także w zastosowaniach kosmicznych.

Pierwszą próbą komercjalizacji ładowalnych baterii litowych była bateria zaprezentowana w 1976 r. przez firmę Exxon w Stanach Zjednoczonych. Była to bateria z katodą TiS₂ (disiarczek tytanu(IV)), anodą metaliczną z litu oraz ciekłym elektrolitem, którym była sól litu LiPF₆ (heksafluorofosforan litu) rozpuszczona w węglanie propylenu (cykliczny ester). Stosowano też inny elektrolit – sól LiClO₄ (nadchloran litu) rozpuszczona w mieszaninie dimetylu glikolu etylenowego i tetrahydrofuranu (THF). Ogniwo Li-TiS₂ wykazywało napięcie rozładowania ~2,5 V z dobrą odwracalnością (jeden atomu litu na jedną cząsteczkę TiS₂). Po katodzie TiS₂ zbadano szereg dichalkogenidów metali (ME₂, gdzie M – metal przejściowy, E = siarka, selen, tellur) jako możliwe materiały elektrodowe. Napotkano jednak na dwa główne problemy: (i) napięcie ogniwa było ograniczone do <2,5 V (mała gęstość energii); (ii) wzrost dendrytów na anodach litowo-metalowych podczas cykli ogniwa powodował wewnętrzne zwarcia i stanowił zagrożenie pożarowe. Dlatego próby upowszechnienia rynkowego ogniw składających się z katod siarczkowych i anod litowo-metalowych zostały zaniechane.

Współczesne akumulatory litowo-jonowe posiadają pewne zalety w porównaniu z innymi. Po pierwsze, lit ma najbardziej ujemny potencjał redukcji spośród wszystkich pierwiastków, dzięki czemu akumulatory oparte na licie mają najwyższy możliwy potencjał ogniwa. Ponadto lit jest trzecim najlżejszym pierwiastkiem i ma jeden z najmniejszych promieni jonowych w grupie jednowartościowych jonów. Czynniki te pozwalają akumulatorom opartym o lit mieć wysoką pojemność grawimetryczną i objętościową gęstość energii. Wreszcie, chociaż kationy wielowartościowe umożliwiają większą pojemność ładunku na jon, to dodatkowy ładunek znacznie zmniejsza ich mobilność. Biorąc pod uwagę, że dyfuzja jonowa w elektrodach stałych jest często czynnikiem ograniczającym szybkość działania akumulatora, stanowi to ogromną przeszkodę dla rozwoju akumulatorów opartych na innych nośnikach ładunku.

Baterie litowo-jonowe można scharakteryzować jako systemy magazynowania energii, których działanie oparte jest na reakcjach interkalacji w obu elektrodach, a jony litu pełnią rolę nośników ładunku – Rys. 5-19. Można je podzielić na dwie kategorie: z ciekłym elektrolitem lub ze stałym elektrolitem. Podstawowa różnica polega na tym, że w pierwszej grupie ciekły elektrolit składa się z soli litu (takiej jak fosforan litu LiPF₆) rozpuszczanej w rozpuszczalniku organicznym, takim jak węglan

²⁶ Interkalacja to proces fizykochemiczny polegający odwracalnym włączaniu lub wstawienie cząsteczki (lub jonu) do materiału o wewnętrznej strukturze warstwowej. Proces odwrotny to deinterkalacja.

²⁷ Badacze, którzy opracowali i rozwinęli dziedzinę baterii litowo-jonowych – John B. Goodenough (USA), Michael Stanley Whittingham (USA, UK), Akira Yoshino (Japonia) – zostali uhonorowani Nagrodą Nobla w dziedzinie chemii w 2019 r.
etylenu (EC), węglan dimetylu (DMC), węglan dietylu (DEC), a w drugiej grupie stosuje się stały elektrolit polimerowy, taki jak poli(tlenek etylenu) (PEO), poli(akrylonitryl) (PAN), czy poli(metakrylan metylu) (PMMA). Dlatego baterie te nazywa się potocznie LiPo, LiP lub Li-poly. Ze względu na swój cienki, prostokątny, łatwo konfigurowalny kształt, pakiety LiPo są atrakcyjne dla projektantów poszukujących oszczędności miejsca, szczególnie w ultra cienkich notebookach, smartfonach czy tabletach.

Rys. 5-19 Schemat budowy ogniwa litowo-jonowego. Pokazany ruch jonów i elektronów odpowiada ładowaniu ogniwa.

Podstawy elektrochemii ogniwa litowo-jonowego. Bateria zawiera jedno lub więcej identycznych ogniw elektrochemicznych. Każde ogniwo magazynuje energię elektryczną w postaci energii chemicznej w materiałach dwóch elektrod – anody i katody, które są rozdzielone elektrolitem (uproszczony schematyczny układ pokazano na Rys. 5-19 i Rys. 5-20). W elektrolicie odbywa się transport składników jonowych i obojętnych, a elektrony poruszają się pomiędzy elektrodami w obwodzie zewnętrznym. Elektrolit jest medium rozdzielającym elektrody i umożliwiającym ruch jonów litu, zapobiegając jednocześnie wewnętrznemu zwarciu. Reakcje elektrochemiczne przenoszenia ładunku na granicy elektroda/elektrolit są odwracalne, dzięki czemu zbudowana z nich bateria jest urządzeniem wielokrotnego ładowania (akumulator). Podczas pracy ogniwa (rozładowywania) reakcje fizykochemiczne na granicy elektroda/elektrolit uwalniają energię zmuszając elektrony do przemieszczania się w obwodzie zewnętrznym od elektrody ujemnej do elektrody dodatniej wykonując użyteczną pracę. Jednocześnie jony Li⁺ przemieszczają się w elektrolicie od elektrody ujemnej do elektrody dodatniej. Elektrolitem może być sól litu, taka jak heksafluorofosforan litu LiPF₆ (rzadziej – tetrafluoroboran litu LiBF₄ lub nadchloran litu LiClO₄) rozpuszczona w rozpuszczalniku organicznym. Gdy ogniwo jest ładowane, ruch elektronów i jonów ulega odwróceniu. W tym trybie energia jest dostarczana z zewnątrz i magazynowana w układzie.

Rys. 5-20 Schemat pokazujący ruch jonów Li⁺ oraz elektronów w ogniwie litowo-jonowym w trybie pracy (rozładowanie). Po lewej stronie jest elektroda grafitowa (C₆), a po prawej tlenkowa (tlenek kobaltu). Ponieważ obie elektrody mogą "przyjmować" atomy litu (interkalacja), więc ich skład jest w ogólności zmienny i można go opisać jako Li_xC₆ oraz Li_xCoO₂.

Elektrody. Istnieje wiele materiałów, które mogą służyć jako elektrody w ogniwie litowo-jonowym. W typowych ogniwach, elektroda ujemna jest wytworzona na bazie grafitu często z dodatkiem krzemu, który zwiększa pojemność materiału, a elektroda dodatnia jest zazwyczaj wykonana z tlenków metali przejściowych lub fosforanów – w zastosowaniach komercyjnych najczęściej są to LiCoO₂ (tlenek kobaltu(III) litu), LiFePO₄ (fosforan żelaza-litu), lub tlenki mieszane litu, niklu, manganu i kobaltu o zmiennej stechiometrii LiNi_xMn_yCo_{1-x-y}O₂. Wykonuje się także katody ze związków o strukturze spineli, np. Li₂Mn₂O₄. Możliwość wykorzystania ogniwa do gromadzenia energii wynika stąd, że (i) energia atomów litu zjonizowanych w warstwowej sieci grafitowej jest większa niż w sieci drugiej elektrody), (ii) proces interkalacji jest w dużym stopniu odwracalny – to znaczy można go przeprowadzić wielokrotnie (kilkaset razy) bez istotnego naruszenie struktury materiału elektrody. Warto też podkreślić, że nie jest możliwe aby wszystkie atomy Li obecne między warstwami CoO₂ dało się usunąć w procesie ładowania. Typowo tylko połowa jonów litu obecna w LiCoO₂, $0 \le x \le 0,5$.

Rys. 5-21 Interkalacja atomów litu pomiędzy warstwami w graficie. Maksymalna liczba atomów litu do atomów węgla może wynosić 1 do 6, dlatego w pełni interkalowany grafit zapisujemy jako LiC₆.

Elektrolit. Jak już wspomniano ogniwa litowo-jonowe występują w dwóch głównych odmianach: z elektrolitem ciekłym i z elektrolitem stałym (na bazie polimerów). W modelu w COMSOLu będziemy rozważać elektrolit ciekły zawierający sól LiPF₆ (heksafluorofosforan litu). Sól ta doskonale nadaje się do zastosowań w ogniwach litowo jonowych, gdyż ma stosunkowo dużą rozpuszczalność w

aprotycznych polarnych rozpuszczalnikach. Roztwory LiPF₆ w mieszankach węglanowych zawierających węglan etylenu, węglan dimetylu, węglanu dietylu i/lub węglan etylometylowy z niewielką ilością jednego lub wielu dodatków, takich jak węglan fluoroetylenu i węglan winylenu, stanowią nowoczesne elektrolity wykorzystywane w akumulatorach litowo-jonowych. Jako składnik elektrolitu stosuje się też także sole z grupą sulfonową –SO₃H. Przykładem jest tu związek LiCF₃SO₃ (trifluorometanosulfonian litu). Należy podkreślić, że w związku z dużą reaktywnością chemiczną litu rozpuszczalniki stosowane w akumulatorach litowych są z reguły niestabilne w kontakcie z tym metalem. W wyniku reakcji litu z rozpuszczalnikiem na powierzchni elektrody pojawia się cienka warstewka pasywna (SEI od ang. *Solid Electrolyte Interface*), która oddziela elektrodę od elektrolitu, ale oznacza to że znacznie modyfikuje właściwości granicy elektroda/elektrolit. Z jednej strony jest to zjawisko korzystne – zwiększa stabilność elektrolitu poprzez oddzielenie od reaktywnego litu w elektrodzie, ale z drugiej strony zjawisko to jest odpowiedzialne za duży spadek generowanego prądu oraz napięcia w pierwszych chwilach pracy ogniwa (tzw. zwłoka potencjałowa, ang. *voltage delay*).

Reakcję redukcji i utleniania litu wraz z jego interkalacją do elektrody grafitowej można opisać równaniem

$$xLi^{+} + 6C + xe^{-} \rightleftharpoons Li_{x}C_{6} \quad (0 \le x \le 1)$$
(5.127)

co często zapisuje się w sposób uproszczony – zaniedbując fakt, że nie zawsze na sześć atomów węgla interkaluje się jeden atom litu – jako

$$\operatorname{Li}^{+} + 6\operatorname{C} + e^{-} \xleftarrow{tadowanie}{\operatorname{roztadowanie}} \operatorname{LiC}_{6}$$
(5.128)

Odpowiednie reakcje na elektrodzie tlenkowej LiCoO2 można zapisać jako

$$\operatorname{LiCoO}_{2} \xrightarrow{tadowanie} \operatorname{Li}_{1-x} \operatorname{CoO}_{2} + x \operatorname{Li}^{+} + x e^{-} \quad (0 \le x \le 0, 5)$$
(5.129)

Projekt COMSOla, który zrealizujemy w tym rozdziale będzie modelował przede wszystkim transport głównych składników w elektrolicie na bazie soli LiPF₆, gdy ogniwo jest ładowane (zewnętrzne źródło energii wymuszą przepływ prądu przez ogniwo). Ponieważ w elektrolicie znajdują się jony wynikające z dysocjacji

$$\mathsf{LiPF}_{_{6}} \rightleftharpoons \mathsf{Li}^{_{+}} + \mathsf{PF}_{_{6}}^{^{-}} \tag{5.130}$$

więc na transport tych jonów wpływ ma nie tylko dyfuzja, ale także pole elektryczne występujące pomiędzy elektrodami. Dlatego musimy uwzględnić w wyrażeniu na strumień **J**_i każdego składnika zarówno człon dyfuzyjny, jak i migracyjny (strumień Nernsta–Plancka):

$$\mathbf{J}_{i} = \underbrace{-D_{i} \nabla c_{i}}_{dyfuzja} \underbrace{-\frac{Z_{i} F}{RT} D_{i} c_{i} \nabla \varphi}_{migracja}, \qquad (5.131)$$

gdzie c_i to stężenie *i*-tego składnika (mol/m³), D_i to współczynnik dyfuzji (m²/s), z_i to liczba ładunkowa (dla składnika obojętnego $z_i = 0$), F, R, T to stała Faradaya, uniwersalna stała gazowa, oraz temperatura (K).

W ogólnym przypadku wystąpią trzy składniki – dwa jony i jeden obojętny: Li^+ , PF_6^- , $LiPF_6$, gdy reakcja dysocjacji (5.130) nie jest kompletna. Dlatego w układzie równań mogą wystąpić cztery niewiadome funkcje (trzy stężenia + potencjał elektryczny):

$$C_{Li^{+}}, C_{PF_{c}^{-}}, C_{LiPF_{b}}, \varphi.$$
 (5.132)

Poza tym reakcja dysocjacji/asocjacji (5.130) będzie potraktowana dynamicznie (model niestacjonarny), a więc wystąpią dwie kinetyczne stałe szybkości reakcji k_f oraz k_b :

$$\operatorname{LiPF}_{6} \underset{k_{b}}{\overset{k_{f}}{\longleftarrow}} \operatorname{Li}^{+} + \operatorname{PF}_{6}^{-}$$
(5.133)

Zakładając szybkość reakcji dysocjacji pierwszego rzędu ($v_f = k_f c_{\text{LiPF}_6}$) oraz szybkość reakcji asocjacji drugiego rzędu ($v_b = k_b c_{\text{Li}^+} c_{\text{PF}_c}$) otrzymamy następujące wyrażenia na człony reakcyjne

$$R_{\text{LiPF}_{6}} = -R, \ R_{\text{PF}_{6}^{-}} = R, \ R_{\text{Li}^{+}} = R, \tag{5.134}$$

gdzie $R = k_f c_{\text{LiPF}_6} - k_b c_{\text{Li}^+} c_{\text{PE}^-}$. Uwzględniając prawo zachowania dla każdego składnika $i = \text{Li}^+$, PF⁻₆, LiPF₆

$$\frac{\partial c_i}{\partial t} + \nabla \cdot \mathbf{J}_i = R_i \tag{5.135}$$

oraz liczby ładunkowe $z_{Li^+} = +1$, $z_{PF_6^-} = -1$, $z_{LiPF_6} = 0$ i człony reakcyjne (5.134), otrzymujemy układ równań

$$\frac{\partial c_{Li^{+}}}{\partial t} + \nabla \cdot \mathbf{J}_{Li^{+}} = R, \qquad \mathbf{J}_{Li^{+}} = -D_{Li^{+}} \nabla c_{Li^{+}} - D_{Li^{+}} \frac{F}{RT} c_{Li^{+}} \nabla \varphi,$$

$$\frac{\partial c_{\mathsf{PF}_{6}^{-}}}{\partial t} + \nabla \cdot \mathbf{J}_{\mathsf{PF}_{6}^{-}} = R, \qquad \mathbf{J}_{\mathsf{PF}_{6}^{-}} = -D_{\mathsf{PF}_{6}^{-}} \nabla c_{\mathsf{PF}_{6}^{-}} + D_{\mathsf{PF}_{6}^{-}} \frac{F}{RT} c_{\mathsf{PF}_{6}^{-}} \nabla \varphi,$$

$$\frac{\partial c_{\mathsf{LiPF}_{6}}}{\partial t} + \nabla \cdot \mathbf{J}_{\mathsf{LiPF}_{6}} = -R, \qquad \mathbf{J}_{\mathsf{LiPF}_{6}} = -D_{\mathsf{LiPF}_{6}} \nabla c_{\mathsf{LiPF}_{6}},$$
(5.136)

które łatwo implementuje się w COMSOLU używając interfejsu General Form PDE.

Przypadek 1. Rozważymy najpierw model, w którym nie będzie reakcji dysocjacji/asocjacji (5.133), czyli przyjmiemy, że sól LiPF₆ dysocjuje całkowicie

$$\mathsf{LiPF}_{_{6}} \rightarrow \mathsf{Li}^{_{+}} + \mathsf{PF}_{_{6}}^{_{-}}, \tag{5.137}$$

a cały układ można opisać modelem jednowymiarowym (1D) (tak jak to sugeruje Rys. 5-20, $0 \le x \le \ell$). Mamy więc dwa jony Li⁺ i PF₆⁻ oraz potencjał φ . W rozważanym przypadku wygodniej jednak będzie w rachunkach posługiwać się natężeniem pola elektrycznego w wyrażeniu na strumień (5.131), dlatego strumień zapiszemy następująco

$$J_{i} = -D_{i} \frac{\partial c_{i}}{\partial x} + z_{i} D_{i} \frac{F}{RT} c_{i} E, \quad i = Li^{+}, \ PF_{6}^{-}, \qquad (5.138)$$

gdzie $E = -\frac{\partial \varphi}{\partial x}$. W powyższym zapisie strumienia wykorzystaliśmy fakt, że w jednym wymiarze $\nabla \varphi = \frac{\partial \varphi}{\partial x}$. Mamy więc dwa strumienie (dla $i = \text{Li}^+$, PF_6^-)

$$J_{Li^{+}} = -D_{Li^{+}} \frac{\partial c_{Li^{+}}}{\partial x} + z_{Li^{+}} D_{Li^{+}} \frac{F}{RT} c_{Li^{+}} E, \quad J_{PF_{6}^{-}} = -D_{PF_{6}^{-}} \frac{\partial c_{PF_{6}^{-}}}{\partial x} + z_{PF_{6}^{-}} D_{PF_{6}^{-}} \frac{F}{RT} c_{PF_{6}^{-}} E, \quad (5.139)$$

oraz prawo zachowania masy (bez reakcji!)

$$\frac{\partial c_{Li^+}}{\partial t} + \frac{\partial J_{Li^+}}{\partial x} = 0, \quad \frac{\partial c_{\mathsf{PF}_6^-}}{\partial t} + \frac{\partial J_{\mathsf{PF}_6^-}}{\partial x} = 0.$$
(5.140)

Po podstawieniu (5.139) do (5.140) otrzymamy

$$\frac{\partial c_{\mathrm{Li}^{+}}}{\partial t} = D_{\mathrm{Li}^{+}} \frac{\partial^{2} c_{\mathrm{Li}^{+}}}{\partial x^{2}} - z_{\mathrm{Li}^{+}} D_{\mathrm{Li}^{+}} \frac{F}{RT} \frac{\partial}{\partial x} (c_{\mathrm{Li}^{+}} \mathrm{E}),$$

$$\frac{\partial c_{\mathrm{PF}_{6}^{-}}}{\partial t} = D_{\mathrm{PF}_{6}^{-}} \frac{\partial^{2} c_{\mathrm{PF}_{6}^{-}}}{\partial x^{2}} - z_{\mathrm{PF}_{6}^{-}} D_{\mathrm{PF}_{6}^{-}} \frac{F}{RT} \frac{\partial}{\partial x} (c_{\mathrm{PF}_{6}^{-}} \mathrm{E}).$$
(5.141)

Warunek początkowy jest taki sam dla obu jonów

$$c_{Li^{+}}(x,0) = c_{0}, \quad c_{PF_{6}^{-}}(x,0) = c_{0}, \qquad 0 \le x \le \ell.$$
(5.142)

Warunki brzegowe wynikają z wymuszonego przepływu prądu przez ogniwo w procesie ładowania. Jeżeli gęstość prądu oznaczymy przez $i_{cell}(t)$, to ze względu na reakcje

$$\mathrm{Li}^{+} + e^{-} \rightarrow \mathrm{LiC}_{6}, \qquad \mathrm{LiCoO}_{2} \rightarrow \mathrm{Li}^{+} + e^{-} \qquad (5.143)$$

uzyskujemy związek pomiędzy strumieniem jonów Li⁺ a gęstością prądu na obu elektrodach, czyli w punktach x = 0 i $x = \ell$:

$$J_{LI^{+}}(0,t) = -\frac{i_{cell}(t)}{F}, \quad J_{LI^{+}}(\ell,t) = -\frac{i_{cell}(t)}{F}.$$
(5.144)

Znak minus w powyższych wzorach wynika z tego, że gęstość prądu ładowania przyjmiemy i_{cell} >0, a jak widać z Rys. 5-20 strumienie jonów litu w takim układzie są skierowane w lewo, zatem muszą być ujemne. Natomiast jony PF_6^- nie uczestniczą w reakcjach elektrodowy, są one po prostu zamknięte w roztworze elektrolitu pomiędzy elektrodami, zatem ich strumienie na brzegu są równe zero

$$J_{PF_{6}^{-}}(0,t) = 0, \qquad J_{PF_{6}^{-}}(\ell,t) = 0.$$
(5.145)

Ponieważ $z_{Li^+} = +1$, $z_{PF_6^-} = -1$ oraz przyjmiemy warunek elektroobojętności, czyli stężenia Li⁺ i PF_6^- są takie same, $c_{Li^+} = c_{PF_6^-} = c$, równania przyjmą postać:

$$\frac{\partial c}{\partial t} = D_{LI^{+}} \frac{\partial^{2} c}{\partial x^{2}} - D_{LI^{+}} \frac{F}{RT} \frac{\partial}{\partial x} (cE),$$

$$\frac{\partial c}{\partial t} = D_{PF_{6}} \frac{\partial^{2} c}{\partial x^{2}} + D_{PF_{6}} \frac{F}{RT} \frac{\partial}{\partial x} (cE),$$
(5.146)

warunki brzegowe (na strumienie):

$$-D_{\mathsf{L}^{+}} \frac{\partial c}{\partial x}(0,t) + D_{\mathsf{L}^{+}} \frac{F}{RT} c(0,t)\mathsf{E}(0,t) = -\frac{i_{cell}(t)}{F}, \quad -D_{\mathsf{L}^{+}} \frac{\partial c}{\partial x}(\ell,t) + D_{\mathsf{L}^{+}} \frac{F}{RT} c(\ell,t)\mathsf{E}(\ell,t) = -\frac{i_{cell}(t)}{F},$$

$$-D_{\mathsf{PF}_{6}^{-}} \frac{\partial c}{\partial x}(0,t) - D_{\mathsf{PF}_{6}^{-}} \frac{F}{RT} c(0,t)\mathsf{E}(0,t) = 0, \quad -D_{\mathsf{PF}_{6}^{-}} \frac{\partial c}{\partial x}(\ell,t) - D_{\mathsf{PF}_{6}^{-}} \frac{F}{RT} c(\ell,t)\mathsf{E}(\ell,t) = 0,$$
(5.147)

a warunek początkowy

$$c(x,0) = c_0.$$
 (5.148)

Mamy zatem do rozwiązanie problem zdefiniowany matematycznie przez równania (5.146), (5.147) oraz (5.148), w których niewiadomymi są c(x, t) i E(x, t).

Okazuje się, że w tym przypadku można odseparować pole elektryczne od stężenia. Mnożymy pierwsze równanie w (5.146) przez $D_{\mu rec}$, drugie przez $D_{\mu r}$, a następnie dodajemy i otrzymujemy

$$\frac{\partial c}{\partial t} = D_{\text{LiPF}_6} \frac{\partial^2 c}{\partial x^2}, \qquad (5.149)$$

gdzie $D_{\text{LiPF}_6} = \frac{2D_{\text{Li}^+}D_{\text{PF}_6^-}}{D_{\text{Li}^+} + D_{\text{PF}_6^-}}$ jest tzw. *współczynnikiem dyfuzji soli* LiPF_6. Z równań brzegowych (5.147)

mamy z kolei

$$\frac{\partial c}{\partial x}(0,t) = \frac{i_{cell}(t)}{2D_{Ll^+}F}, \quad \frac{\partial c}{\partial x}(L,t) = \frac{i_{cell}(t)}{2D_{Ll^+}F}.$$
(5.150)

Tak więc opis zredukowany jest do następującego zagadnienia

$$\begin{cases} \frac{\partial c}{\partial t} = D_{\text{LiPF}_{6}} \frac{\partial^{2} c}{\partial x^{2}}, & (0 \le x \le \ell, t > 0), \\ c(x,0) = c^{0}, & (5.151) \\ \frac{\partial c}{\partial x}(0,t) = \frac{i_{cell}(t)}{2D_{\text{Li}^{+}}F}, & \frac{\partial c}{\partial x}(\ell,t) = \frac{i_{cell}(t)}{2D_{\text{Li}^{+}}F}. \end{cases}$$

Jeżeli z tego układu wyliczymy (numerycznie) stężenie c(x, t), to w drugiej kolejności będzie można wyliczyć pole elektryczne, a w konsekwencji potencjał $\varphi(x,t) = -\int_{0}^{x} E(y,t)dy$. Odejmujemy w tym celu drugie równanie od pierwszego w (5.146)

$$-\frac{\partial}{\partial x}\left(\frac{F}{RT}cE\right) = \frac{D_{\mathsf{PF}_{6}^{-}} - D_{\mathsf{Li}^{+}}}{D_{\mathsf{PF}_{6}^{-}} + D_{\mathsf{Li}^{+}}} \frac{\partial^{2}c}{\partial x^{2}},$$
(5.152)

a następnie całkujemy od 0 do x

$$-\frac{F}{RT}(cE)(x,t) + \frac{F}{RT}(cE)(0,t) = \frac{D_{\mathsf{PF}_{6}^{-}} - D_{\mathsf{Li}^{+}}}{D_{\mathsf{PF}_{6}^{-}} + D_{\mathsf{Li}^{+}}} \frac{\partial c}{\partial x}(x,t) - \frac{D_{\mathsf{PF}_{6}^{-}} - D_{\mathsf{Li}^{+}}}{D_{\mathsf{PF}_{6}^{-}} + D_{\mathsf{Li}^{+}}} \frac{\partial c}{\partial x}(0,t).$$
(5.153)

Wykorzystując warunki brzegowe (5.147) możemy wyeliminować (*c E*)(0,*t*) i $\partial c/\partial x(0,t)$ z powyższego równania (użyjemy dalej dla wygody liczb przenoszenia jonów $t_i = D_i/(D_1+D_2)$

$$-(cE)(x,t) = \frac{\partial c}{\partial x}(0,t) + \frac{D_{pr_{6}^{-}} - D_{u^{+}}}{D_{pr_{6}^{-}} + D_{u^{+}}} \frac{\partial c}{\partial x}(x,t) - \frac{D_{pr_{6}^{-}} - D_{u^{+}}}{D_{pr_{6}^{-}} + D_{u^{+}}} \frac{\partial c}{\partial x}(0,t)$$

$$= \left[1 - \frac{D_{pr_{6}^{-}} - D_{u^{+}}}{D_{pr_{6}^{-}} + D_{u^{+}}}\right] \frac{\partial c}{\partial x}(0,t) + (t_{pr_{6}^{-}} - t_{u^{+}}) \frac{\partial c}{\partial x}(x,t) = \frac{2D_{u^{+}}}{D_{pr_{6}^{-}} + D_{u^{+}}} \frac{\partial c}{\partial x}(0,t) + (t_{pr_{6}^{-}} - t_{u^{+}}) \frac{\partial c}{\partial x}(x,t)$$

$$= \frac{2D_{u^{+}}}{D_{pr_{6}^{-}} + D_{u^{+}}} \frac{i_{cell}(t)}{2D_{u^{+}}F} + (t_{pr_{6}^{-}} - t_{u^{+}}) \frac{\partial c}{\partial x}(x,t) = \frac{i_{cell}(t)}{(D_{pr_{6}^{-}} + D_{u^{+}})F} + (t_{pr_{6}^{-}} - t_{u^{+}}) \frac{\partial c}{\partial x}(x,t),$$
(5.154)

zatem

$$E(x,t) = -\frac{i_{cell}(t)}{(D_{PF_{c}^{-}} + D_{L_{1}^{+}})F} \cdot \frac{1}{c(x,t)} + (t_{L_{1}^{+}} - t_{PF_{c}^{-}})\frac{\partial \ln c}{\partial x}(x,t)$$
(5.155)

i całkując od 0 do x otrzymujemy potencjał elektryczny w elektrolicie

$$\varphi(x,t) = -\int_{0}^{x} E(y,t) dy = \frac{i(t)}{(D_{PF_{0}^{-}} + D_{Li^{+}})F} \int_{0}^{x} \frac{1}{c(y,t)} dy + (t_{Li^{+}} - t_{PF_{0}^{-}}) \int_{0}^{x} \frac{\partial \ln c}{\partial x}(y,t)$$

$$= \frac{i(t)}{(D_{PF_{0}^{-}} + D_{Li^{+}})F} \int_{0}^{x} \frac{1}{c(y,t)} dy + (t_{Li^{+}} - t_{PF_{0}^{-}}) \ln \frac{c(x,t)}{c(0,t)}.$$
(5.156)

Zadanie 1. Wykonaj projekt uwzględniający dysocjację soli LiPF₆ w roztworze elektrolitu. Oblicz potencjał elektryczny w elektrolicie.

Rozwiązanie:

- 1. Uruchom program *COMSOL Multiphysics* i wybierz *Model Wizard*. Jako *Space Dimension* wybierz 1D.
- 2. W oknie *Select Physics* wybierz interfejs *General Form PDE (g)*. Zmień nazwę zmiennej na *c*, oraz wybierz jednostki *Concentration (mol/m^3)* oraz *Reaction rate (mol/(m^3*s))*.

Select Physics	Review Physics Interface
Search Au General Form PDE (g) Δu General Form PDE (g) Δu Coefficient Form PDE (c) Au Coefficient Form P	General Form PDE (g) Dependent Variables Field name: Number of dependent variables: Dependent variables: +
	Units Dependent variable quantity Concentration (mol/m^3) Source term quantity Reaction rate (mol/(m^3*s))
Added physics interfaces: <u>Au</u> General Form PDE (g)	

- 3. W sekcji Study wybierz Time Dependant i kliknij Done.
- 4. Zdefiniuj parametry występujące w modelu, wprowadzając je do tabeli *Parameters*, tak jak na poniższej grafice.

- 1 + * •	Parameter	s						
Li-ion battery_10_two species.mph (root) Global Definitions Pi Parameters ET Materials	▼ Parame	Parameters						
Use Lange, "Dure genes apply index (Sample Sample Sampl	Parama Nanne L D.J.PF6 D.J.PF6 D.J.PF6 D.J.PF6 To To	Depression Colorent 2.86-Time Yald Add Time Yald 2.86-Time Yald Add Time Yald 2.86-Time Yald Bold Yald Yald 2.80-Time Yald Bold Yald Yald 2.80-Time Yald Bold Yald Yald 2.90-Time Yald Bold Yald Yald Yald 2.90-Time Yald Yald Yald Yald Yald Yald Yald Yald	Value 854 m 46-11 m ² /s 46-11 m ² /s 46-11 m ² /s 26607 11 m ² /s 30 A m ⁴ 1000 mm ² /m ² 6.33333 6.6669 read 6.3165 (read 6.3165 (r	Description Secretoid opping lipititit. Way, dytug PC+(-) Way, dytug PC+(-) Way, dytug PC+(-) Way, dytug PC+(-) Way, dytug PC+(-) Secretoid Reservation Loadu procession PC+ Sais Fandya Sais Fandya Bernecity wep8icgrenik				

5. Utwórz geometrię. Prawym przyciskiem kliknij *Geometry 1* i z listy wybierz *Interval*, do pola tekspowego *Right endpoint* wprowadź L i kliknij *Build Selected*.

Lines Hotz, "D. Lee operior.org/ hood	odel Builder → ↑ ↓ ▼ • ⊐ = = •	 Settings Interval 	
Bit Marchini - Compared lawpe Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Compared lawpe Di - Marchini / Herrichini / Di - Marchini / Herrichini / Di - Marchini / Herrichini / Di - Marchini / Herrichini / Di - Marchini / Herrichini / Di - Marchini / Herrichini / Di - Marchini / Herrichini / Di - Marchini / Herrichini / Di	Li-ion battery_1D_two species.mph (root) Global Definitions Pi Parameters	Build Selected - Build All Objects Label: Interval 1	
A Conduct Conserver(FE) Conserver(Materials Component 1 (comp 2)	★ Interval	
Improvement	E Definitions A Geometry 1	Number of intervals: One	
Burners (Berners) Consent from POG (g) Section of the position of the p	Interval 1 (73)	Left endpoint: 0	
A to Grand Form IPCI (p) Concernition IPCI (p) Concernit	11 Materials	Right endpoint: L	
A - Zoor Sind T Took Makes 1 Took Makes 1 Construct the None N	A Δυ General Form PDE (g) B General Form PDE 1	 Selections of Resulting Entities 	
A datan 1 ☐ Read/org cipets indextes	P Zero Flux 1	Contribute to: None	• New
A "S Stady 1 Show in physics: Domain selection	Mesh 1	Resulting objects selection	
2 😸 Dools	A 100 Study 1	Show in physics: Domain selection	

 Zdefiniuj pomocnicze funkcje i zmienne. Dodaj funkcję opisującą prąd ładowania od czasu. Kliknij prawym przyciskiem na *Definitions* i z listy wybierz *Functions>Analitic*. Zmień nazwę funkcji na icell_fun. W pole tekstowe *Expression* wprowadź icell*(t<=50), a w pole *Arguments*: t. Jako jednostki wprowadź min i A/m^2.

Model Builder	Settings Analytic Plot M Create Plot		•	Gi Q	raphics ବ୍ ୟ ଲା ।		•	ic	ell_fun(t) (A/m	~2)					• •
Parameters Set Materials Component 1 (comp 1)	Function name: icel_fun)			20 -										-
	Definition Expression: icell*(t <= 50) Aroument: t]			18-										
Interval 1 (7) Interval 1 (7) Interval 1 (7) Automatic form (7) Automatic form (7) Automatic form (7)	Derivatives: Automatic	J	•		14										
▲ do Genéral Hom V(g) ► Genéral Form POE 1 ► Tare Flux 1 ▲ Index 1 ▲ Mein 1 ▲ Sep 1: Time Dependent ► Regular ▲ Sep 1: Time Dependent	Units Arguments: min			~2)	12										
	Function: A/m^2			m(t) (A/m	10-										-
	Plot Parameters			cell_ft	8										
	Argument	Lower limit	Upper limit	1											
	t.	0	lootmint		6-										
	↑↓≡				4-										
					0										
					0	10	20	30	40	50 t (min)	60	70	80	90	100

7. Zdefiniuj operator całkowania. Kliknij prawym przyciskiem na *Definitions* i z listy wybierz *Component Couplings>Integration*. W oknie *Selection* wybierz *All domains*.

Model Builder v = ← → ↑ ↓ ▼ • Ⅲ Ⅲ •	Settings ・・ Graphics 和agration ・ Graphics ペース 保 会 田 レ・ ー ー ト ・ モ 岡 服 国 本 国 国 ン 商 自	~ 1
	Label integration 1 CO Operator same: integra	U
Component (comp)	Source seection Section Commit confly load Demain	
	Active	
initial Values 1	Advanced	
🖄 Step 1: Time Dependent > 🝓 Results	Integration order: 4	
	Frame Spatial (s, y, d)	v10 ⁻⁴ m
	· 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2	2.4 2.6 2.8 3

Kliknij prawym przyciskiem na *Definitions* i z listy wybierz *Variables*. Wprowadź dwie zmienne opisujące składowe potencjału (5.156): Vdiff = (R*T/F)*(tPF6-tLi)*log(at0(L,c)/at0(0,c)) oraz Vmig = (R*T/F^2)* icell_fun(t)/(D_Li+D_PF6)* intop1(1/c).

Model Builder ← → ↑ ↓ ▼ • Ⅲ Ⅲ •	Settings Variables	Graphics 역 역 条 今 詔 少 • = \ ※ ※ ※ 家 國 토 오 @ 음	* 8
Model Builder	Settings	Graphics 《《《》田(小)二二一)〉(《《田田)《国田》(《日田田)	
	↑ ↓ = \ to Q ağ • Nama Vari	. b b2 b4 b6 b8 1 12 14 16 18 2 22 24 26 28	10 ⁻⁴ m

 Zdefiniuj próbnik typu Domain Probe. Kliknij prawym przyciskiem na Definitions i z listy wybierz Probes>Domain Probe i jako Type wybierz Average. W polu Expression wprowadź wyrażenie: (R*T/F)*(icell/ ((D_Li+D_PF6)*F)*intop1(1/c)+(tPF6-tLi)*log(at0(L,c)/at0(0,c))).

Model Builder ••• ← → ↑ ↓ ∓ • □↑ ₩ ₩ • • Φ U-iso https://D to opecies.mph (root) Φ U-iso https://D hot opecies.mph (root) Φ U-iso https://D hot opecies.mph (root) Φ U-iso https://D hot opecies.mph (root) Φ U-iso https://D hot opecies.mph (root) Φ U-iso https://D hot opecies.mph (root) Φ U-iso https://D hot opecies.mph (root) Φ U-iso https://D hot opecies.mph (root) Φ U-iso https://D hot opecies.mph (root) Φ U-iso https://D hot opecies.mph (root) Φ U-iso https://D hot opecies.mph (root)	Settings Domain Probe C' Update Revuts Libete Domain Probe 1 Walake runne, dom1		Graphics Q Q Q 令 田 小・ 二日 → 大 ※ ⇔ 尿 短 ※ 日 四 日 つ 回 日	•
	Frabe Type Type Average Source Selection	•		
	Active	• + 8	· · · · · · · · · · · · · · · · · · ·	
A to transfil ≦ top 1 Fine Oppendent ⇒ Reads	Epression Errersion Errersion	•		
	> Table and Window Settings	F		m

 Zdefiniuj równania bilansu. Kliknij General Form PDE 1 i w polu Concervative Flux wpisz wyrażenie: -D_LiPF6*cx, a w polu Sorce term wpisz 0. Kliknij węzeł Initial Values 1 w polu Initial value of c wpisz c0.

Model Builder ← → ↑ ↓ ▼ - Ⅲ Ⅲ Ⅲ -	Settings General Form PDE	Graphics <	k
	Libel General Form PDE 1 [2] • Domain Selection Selection Advent		Ĩ
	Override and Contribution Equation Conservative Flux		
R — Initial Values 1 ▲ Meth 1 ▲ Study 1 ▲ Step 1: Time Dependent	Concertaine has		
D 🍓 Results	f 0 mol/(m ¹ s) ▼ Damping or Mass Coefficient		
	0 _a 1 1 • Mass Coefficient e _a 0 5		
			2

11. Na lewym brzegu (katoda, x=0) zdefiniuj warunek na strumień. Dodaj *Flux/Source* w pole *Boundary Flux/Source* wprowadź -(1-tLi)*icell_fun(t)/F.

Model Builder ← → ↑ ↓ ▼ • Ⅲ Ⅲ •	Settings · · ·	Graphics ④ ④ 奈 令 田 小・ 二 一 言 六 ※ ※ 限 服 ※ 回 国 D 回 目
4 So Global Definitions	Labet Flux/Source 1 - katoda	
Pi Parameters	▼ Boundary Selection	
 	Selection Manual • Advert	
11 Materials	Override and Contribution	
General Form PDE (g) D General Form PDE 1	Equation	
Zero Flux 1 ■ Initial Values 1 ■ Flux/Source 1 - katoda Mejsh 1	Boundary Flux/Source g -(1-tLi)*icell_fun(t)/F mol/(m*s)	•
Study 1 Step 1: Time Dependent Results	Boundary Absorption/Impedance Term	
		°° 'b2' 'b4' 'b6' 'b8' 'b1' '12' '14' '16' '18' '2' '22' '24' '26' '28' '5

12. Na prawym brzegu (anoda, *x*=L) zdefiniuj warunek na strumień. Dodaj *Flux/Source*i w pole *Boundary Flux/Source* wprowadź (1-tLi)*icell_fun(t)/F.

Model Builder ← → ↑ ↓ ∓ • Ⅲ Ⅲ •	Settings · · ·	Graphics Q Q 魚 令 田 小・ 二一 西 大 ※ ※ ※ 服 脳 ※ ■ 国 王 つ 図 目
 Slobal Definitions Bostonicaria 	Labet: Flux/Source 2 - anoda	9
Materials	 Boundary Selection 	
Component 1 (comp1) Definition	Selection: Manual	
** Veriable:1 Schulde:1 Schuld:1 Schuld:	Adive	
Materials	Override and Contribution	
Au General Form PDE (g) D General Form PDE 1	Equation	
Zero Flux 1	Boundary Flux/Source	·
Initial Values 1 Flan/Source 1 - katoda Flan/Source 2 - anoda	g (1-tL)'icell_fun(t)/F mol/(m ¹ s)	
z ~ ~ Sudoj i in province i in province Pr		

13. Zdefiniuj siatkę obliczeniową. W oknie Size>Element size wybierz Custom i w pole Maximum element size wprowadź L/200, a w pole Maximum element growth rate: 1.1. Dodaj kolejny rozmiar Size 1 i wybierz dwa brzegowe punkty w pobliżu których siatkę będzie zagęszczona. W polu Maximum element size wprowadź L/1000, a w polu Maximum element growth rate: 1.2.

Model Builder ▼ # ← → ↑ ↓ ∓ ~ Ift III ↓ ▼ ▲ ④ Lion hattery, 10 two species.mph (root) ▲ ● @ Gobal Definitions ● ● Deminters ●	Settings	Graphics ● ● ▲ ● 田 ↓ • = - 西 べ ● ● 風 題 ● ■ 国 王 ⊃ ● ■ ●
	Geometric Entry Selection Geometric entry level Boundary Active	
B— General Form PDE 1 B— Zero PAr 1 B— Initial Values 1 → Frac/Source 2 - anoda ▲ Muth 1 ▲ Step 1 ▲ Step 1	Element Size Calibrate for: General physics	
- ~ `` tangestant È gen ≥ @ Fronts → Rends	Element Size Parameters Element Size Element Size Element Size Element Size Element growth size Element growth size Element growth size Element Size Size Size Size Element Size Size Size Size Size Size Element Size Size Size Size Size Size Size Size	- ο δ2 δ4 δ6 δ8 1 12 14 16 18 2 22 24 26 28 5

14. Wykonaj obliczenia dla czasów: **0 0.1 1 5 10 25 50 51 55 60 70 80**. Zaznacz opcję *Results While Solving*, aby na bieżąco obserwować wyniki obliczeń na wykresie.

Model Builder ← → ↑ ↓ ∓ • Ⅲ Ⅲ •	* Settings - * Graphics Probe Plot I Convergence Plot 1 Three Dependent Q Q (の	~ 1
Solution (root) Solution Global Definitions Pi Parameters Line (root)	Compute C Update Solution Label: Time Dependent	٠
	Study Settings Time unit is Time unit is Time unit is	
Domain Probe 1 (dom 1) (integration 1 (integ 1) U View 1 Geometry 1	Tetrance (Physics controlled • • • • • • • • • • • • • • • • • • •	
Interval 1 (i1) Form Union (fin) Materials Gue General Form PDE (g)	St Pet Pint group 10 Pet Geop 1	
 General Form PDE 1 P Zero Flux 1 Initial Values 1 → Flux/Source 1 - katoda 	Update at Times stored in output Problem AI File Times that the file output	
→ Flux/Source 2 - anoda Mesh 1 All Size All Edge 1	Physics and Variables Selection Modify physics are variables for study step	
Size 1 Size 1 Size 1 Size 1: Size 1: Time Dependent by fry. Solver Configurations	* Physics interface Solve for Discretization General Form PDE (g) I Physics settings •	
E des Results	Values of Dependent Variables Values of Dependent Variables Methods Selection Studie Selection	
	- b b2 b4 b6 b8 1 1.2 1.4 1.6 1.8 2 22 24 26 28	0 ⁻⁴ m

Zadanie 2. Przygotuj projekt uwzględniający niepełną dysocjację soli LiPF₆ w roztworze elektrolitu. Opis modelu znajduje się poniżej (Przypadek 2).

Przypadek 2.

W przypadku niepełnej dysocjacji soli LiPF₆ w roztworze elektrolitu występują trzy składniki – dwa jony i jeden obojętny: Li^+ , PF₆⁻, LiPF₆, gdyż przyjmiemy, że reakcja dysocjacji (5.130) nie jest kompletna. Dlatego w układzie równań opisujących model są cztery niewiadome funkcje (trzy stężenia i potencjał):

$$c_{\rm Li^+}, c_{\rm pe_{\rm c}^-}, c_{\rm LiPF_{\rm c}}, \varphi.$$
 (5.157)

Poza tym reakcja dysocjacji/asocjacji (5.130) jest dynamiczna (model niestacjonarny), a więc wprowadzimy dwie kinetyczne stałe szybkości reakcji k_f oraz k_b :

$$\operatorname{LiPF}_{6} \xrightarrow[k_{b}]{k_{f}} \operatorname{Li}^{+} + \operatorname{PF}_{6}^{-}$$
(5.158)

Zakładając szybkość *reakcji dysocjacji* pierwszego rzędu ($v_f = k_f c_{\text{LiPF}_6}$) oraz szybkość *reakcji asocjacji* drugiego rzędu ($v_b = k_b c_{\text{Li}^+} c_{\text{PF}_6}$), otrzymamy następujące wyrażenie na człony reakcyjne

$$R_{\text{LiPF}_{6}} = -R, \quad R_{\text{PF}_{6}^{-}} = R, \quad R_{\text{Li}^{+}} = R, \quad R = k_{f} c_{\text{LiPF}_{6}} - k_{b} c_{\text{Li}^{+}} c_{\text{PF}_{6}^{-}}.$$
(5.159)

Uwzględniając teraz prawo zachowania dla każdego składnika

$$\frac{\partial c_i}{\partial t} + \nabla \cdot \mathbf{J}_i = \mathbf{R}_i \qquad (i = \mathrm{Li}^+, \mathrm{PF}_6^-, \mathrm{LiPF}_6) \qquad (5.160)$$

oraz liczby ładunkowe $z_{Li^+} = +1$, $z_{PF_6^-} = -1$, $z_{LiPF_6} = 0$ i człony reakcyjne (5.134), otrzymujemy układ równań w jednym wymiarze (div $\mathbf{J}_i = \nabla \cdot \mathbf{J}_i \stackrel{\text{1D}}{=} \frac{\partial \mathbf{J}_i}{\partial \mathbf{x}}$)

$$\frac{\partial c_{\mathrm{Li}^{+}}}{\partial t} + \frac{\partial J_{\mathrm{Li}^{+}}}{\partial x} = R, \qquad J_{\mathrm{Li}^{+}} = -D_{\mathrm{Li}^{+}} \frac{\partial c_{\mathrm{Li}^{+}}}{\partial x} + D_{\mathrm{Li}^{+}} \frac{F}{RT} c_{\mathrm{Li}^{+}} \mathrm{E},
\frac{\partial c_{\mathrm{PF}_{6}^{-}}}{\partial t} + \frac{\partial J_{\mathrm{PF}_{6}^{-}}}{\partial x} = R, \qquad J_{\mathrm{PF}_{6}^{-}} = -D_{\mathrm{PF}_{6}^{-}} \frac{\partial c_{\mathrm{PF}_{6}^{-}}}{\partial x} + D_{\mathrm{PF}_{6}^{-}} \frac{F}{RT} c_{\mathrm{PF}_{6}^{-}} \mathrm{E}, \qquad (5.161)$$

$$\frac{\partial c_{\mathrm{LiPF}_{6}}}{\partial t} + \frac{\partial J_{\mathrm{LiPF}_{6}}}{\partial x} = -R, \qquad J_{\mathrm{LiPF}_{6}} = -D_{\mathrm{LiPF}_{6}} \frac{\partial c_{\mathrm{LiPF}_{6}}}{\partial x}.$$

Warunki brzegowe będą takie same jak dla **Przypadku 1**, gdyż wprowadzenie reakcji homogenicznej w elektrolicie (5.158) nie zmienia warunków brzegowych (5.144) i (5.145) – dochodzi tylko jeszcze jeden warunek: zerowy strumień J_{LiPF_c} na brzegach, zatem:

$$J_{Li^{+}}(0,t) = -\frac{i_{cell}(t)}{F}, \quad J_{Li^{+}}(\ell,t) = -\frac{i_{cell}(t)}{F},$$

$$J_{PF_{6}^{-}}(0,t) = 0, \quad J_{PF_{6}^{-}}(\ell,t) = 0,$$

$$J_{LiPF_{6}}(0,t) = 0, \quad J_{LiPF_{6}}(\ell,t) = 0.$$
(5.162)

W tym przypadku również wykorzystamy warunek elektroobojętności: $c_{Li^+} = c_{PF_6} = c$, dlatego układ przyjmie postać (5.161)

$$\frac{\partial c}{\partial t} = D_{LI^{+}} \frac{\partial^{2} c}{\partial x^{2}} - D_{LI^{+}} \frac{F}{RT} \frac{\partial}{\partial x} (cE) + R,$$

$$\frac{\partial c}{\partial t} = D_{PF_{6}^{-}} \frac{\partial^{2} c}{\partial x^{2}} + D_{PF_{6}^{-}} \frac{F}{RT} \frac{\partial}{\partial x} (cE) + R,$$

$$\frac{\partial c_{LIPF_{6}}}{\partial t} = D_{LIPF_{6}} \frac{\partial^{2} c_{LIPF_{6}}}{\partial x^{2}} - R,$$
(5.163)

z warunkami brzegowymi

$$-D_{LI^{+}} \frac{\partial c}{\partial x}(0,t) + D_{LI^{+}} \frac{F}{RT}(cE)(0,t) = -\frac{i_{cell}(t)}{F}, \quad -D_{LI^{+}} \frac{\partial c}{\partial x}(\ell,t) + D_{LI^{+}} \frac{F}{RT}(cE)(\ell,t) = -\frac{i_{cell}(t)}{F},$$

$$-D_{PF_{0}^{-}} \frac{\partial c}{\partial x}(0,t) - D_{PF_{0}^{-}} \frac{F}{RT}(cE)(0,t) = 0, \quad -D_{PF_{0}^{-}} \frac{\partial c}{\partial x}(0,t) - D_{PF_{0}^{-}} \frac{F}{RT}(cE)(\ell,t) = 0,$$

$$-D_{LIPF_{0}^{-}} \frac{\partial c}{\partial x}(0,t) = 0, \quad -D_{LIPF_{0}^{-}} \frac{\partial c}{\partial x}(\ell,t) = 0.$$
(5.164)

Warunki początkowe uwzględniają początkowy stopień dysocjacji 0 $\leq \alpha \leq$ 1 soli LiPF₆, zatem

$$c(x,0) = \alpha c_0, \quad c_{\text{LiPF}_6}(x,0) = (1-\alpha)c_0. \tag{5.165}$$

Pole elektryczne, a w konsekwencji potencjał elektryczny, otrzymujemy w ten sam sposób, jak w przypadku bez reakcji dysocjacji/asocjacji, por. (5.152)–(5.156), dlatego rachunki nie będą tutaj powtarzane, przedstawiono jedynie wynik końcowy:

$$V_{cell}(t) = \varphi(\ell, t) - \varphi(0, t) = \frac{RT}{F} \left(\frac{i_{cell}(t)G(t)}{(D_{\mathsf{PF}_{6}^{-}} + D_{\mathsf{LI}^{+}})F} + (t_{\mathsf{PF}_{6}^{-}} - t_{\mathsf{LI}^{+}}) \ln \frac{c(\ell, t)}{c(0, t)} \right),$$
(5.166)

gdzie $G(t) = \int_{0}^{\ell} \frac{1}{c(x,t)} dx.$

Bibliografia

- 1. A. Czerwiński, Akumulatory, baterie, ogniwa, Wydawnictwa Komunikacji i Łączności 2005, 2023.
- 2. R. Korthauer, Lithium-Ion Batteries: Basics and Applications, Springer 2018.
- 3. W.S. Bagotsky, A.M. Skundin, Y.W. Volfkovich, Electrochemical Power Sources, Wiley 2015., Technologies, Springer, 2009.
- 4. C.A. Lundgren, K. Xu, T.R. Jow, J. Allen, S.S. Zhang, Springer Handbook of Electrochemical Energy; Lithium-Ion Batteries and Materials, Springer 2017, pp 449–494.

6. Zestawienie rysunków

Rys. 1-1 Obszar (układ) Ω , jego brzeg $\partial \Omega$, przykładowy wektor normalny i dwa wektory 5 styczne, τ_1 , τ_2 .

Rys. 1-2 Element objętości ΔV z zaznaczonym polem wektorowym $\upsilon = [\upsilon_x, \upsilon_y]$ na 7 poszczególnych "ścianach" (tutaj są to boki, bo przykład dotyczy pola wektorowego na płaszczyźnie).

Rys. 1-3 Obszar Ω , w którym ma miejsce transport masy	8
Rys. 1-4 Siły ciśnienia działające na element powierzchni w płynie. Symbol n oznacza wektor normalny.	14
Rys. 1-5 Schematyczny rysunek przedstawiający pojęcie lepkości w płynie.	19
Rys. 1-6. Ilustracja przedstawiająco definicję lepkości dynamicznej μ .	19
Rys. 2-1. Dyskretyzacja przestrzenna dla zagadnienia 1D. Odcinek [0, L] jest podzielony na mniejsze przy pomocy punktów x_i . W metodzie numerycznej wartości rozwiązania będą wyznaczone w tych punktach.	26
Rys. 2-2 Przykładowe triangulacje w geometrii: a) jednowymiarowej 1D, b) dwuwymiarowej 2D i c) trójwymiarowej 3D.	30
Rys. 2-3 Przykładowe funkcje bazowe pierwszego stopnia w geometrii 1D.	30
Rys. 3-1 Przykładowe definicje parametrów przedstawiono na rysunku poniżej.	34
Rys. 3-2 Przykładowe definicje zmiennych globalnych w COMSOLu.	36
Rys. 3-3 Przykładowe definicje zmiennych lokalnych (w ramach komponentu) w COMSOLu.	36
Rys. 4-1 Jednowymiarowy model dyfuzji z reakcją w pęcie o długości <i>L</i> .	39
Rys. 4-2 Rozkład stężenia węgla w parze dyfuzyjnej (na podstawie: L.S. Darken, <i>Trans. AIME</i> 150, 1948).	50
Rys. 4-3 Transport ciepła w pręcie o długości <i>d</i> i promieniu <i>r</i> , w którym ciepło może przenikać przez powierzchnię boczną.	63
Rys. 4-4 Schematyczny rysunek przedstawiający geometrię dla modelu 1D transportu ciepła.	64
Rys. 4-5 Geometria 2D dla modelu transportu ciepła wraz z oznaczeniem brzegów.	70
Rys. 4-6 Geometria 2D dla modelu transportu ciepła w układzie złożonym z wielu materiałów o różnych właściwościach.	75
Rys. 4-7 Schemat procesu dyfuzji w polikrysztale w geometrii 2D.	79

Rys. 5-1 Transport składnika w 2D i adsorpcja na fragmencie ścianki					87	

Rys. 5-2 Paraboliczny profil prędkości w reaktorze. Prędkość na ściankach bocznych (x= 0 i 89 x= a) wynosi 0.

Rys. 5-3 Powiększony fragment układu w pobliżu powierzchni reakcji. Strumień cząstek 89 opisany strumieniem J (żółte strzałki). Gdy są adsorbowane, to szybkość adsorpcji/desorpcji jest równa $n \cdot J$ na brzegu (niebieski odcinek). Jednocześnie ta wielkość jest widziana na odcinku jako człon reakcyjny Rs. Stąd $n \cdot J = Rs$.

R١	s 5-1 Schematy	iczna przedstawiania	transportu wegla w	nrocesie naweglania	۵۵
пy	S. J-4 Schemary	czne przeustawienie	tialispoitu węgia w	procesie nawęgiania.	33

Rys. 5-5 Przeskoki atomów w bezpośrednim mechanizmie węzłowym99

Rys. 5-6 Schemat powstawania napięcia Halla $V_{\rm H}$. Prąd o natężeniu I traktujemy jako ruch 107 elektronów (ładunek e) z prędkością v. Zwrot v jest przeciwny do prądu (zgodnie z konwencją, że zwrot prądu jest zgodny z ruchem ładunków dodatnich).

Rys. 5-7 Geometria i warunki do sformułowania problemu wyznaczenia napięcia Halla. 109 Wewnątrz przewodnika (szary prostokąt) spełnione jest równanie Laplace'a dla potencjału, $\Delta V = 0$ (inny zapis, $\nabla^2 V = 0$). Wektor pola magnetycznego **B** jest prostopadły do płaszczyzny rysunku.

Rys. 5-8 Schemat reakcji korozyjnych na powierzchni zbrojenia. Pokazany jest przepływ 116 elektronów od obszaru anodowego (utlenianie żelaza) do katodowego (redukcja tlenu). Czarne strzałki pokazują ogólny kierunek przepływu prądu elektrycznego (umowny ruch ładunków dodatnich).

Rys. 5-9 llustracja jak wektor normalny jest określony na brzegu obszaru symulacji. Jest to 121 wektor prostopadły do powierzchni w danym punkcie, skierowany na zewnątrz, o długości jednostkowej, |n|=1.

Rys. 5-10 Schemat elektrody jonoselektywnej zanurzonej w badanym roztworze elektrolitu. 131 W elektrolicie znajduje się m.in. jon, którego stężenie (aktywność) chcemy oznaczyć. Na membranie pojawia się mierzalny potencjał elektryczny, którego wartość pozwala oznaczyć jon. W roztworze mogą też występować jony przeszkadzające.

Rys. 5-11 Schemat membrany jonoselektywnej znajdującej się pomiędzy roztworami o 132 stężeniach odpowiednio $c_{i,L}$ po lewej i $c_{i,R}$ po prawej stronie membrany, i=1,...,r; r = liczba składników.

Rys. 5-12 Potencjał membranowy dla różnych stężeń jonu głównego $c_{1l} = c_{l^{2+}, l}$ uzyskany w 135 COMSOLu. Dane do obliczeń – Tab. 5-2. Na osi poziomej (stężenia) jest skala logarytmiczna. Widać, że poniżej stężenia 10⁻³ mol/m³ elektroda traci zdolność do oznaczania jonów *l*²⁺.

Rys. 5-13 Modelowa struktura porowata. Domena oznaczona na niebiesko jest obszarem, w 143 którym zachodzi proces dyfuzji.

Rys. 5-14 Schemat układu SHS.	154
Rys. 5-15 Wymiary domeny obliczeniowej dla SHS do przykładowego projektu COMSOLa.	155
Rys. 5-16. Odkształcenie ciała opisujemy polem wektorowym odkształceń u . W każdym punkcie wektor ten może być inny. Pole wektorowe $\mathbf{u}(x,y,z)$ jest podstawą do zdefiniowania tensora odkształceń.	167
Rys. 5-17. Dwuwymiarowe odkształcenia małego elementu ośrodka ciągłego i interpretacja składowych ε_{xx} oraz ε_{xy} tensora odkształcenia.	168
Rys. 5-18. Ilustracja przybliżenia typu płaskie odkształcenia.	173
Rys. 5-19 Schemat budowy ogniwa litowo-jonowego. Pokazany ruch jonów i elektronów odpowiada ładowaniu ogniwa.	178

Rys. 5-20 Schemat pokazujący ruch jonów Li⁺ oraz elektronów w ogniwie litowo-jonowym w 179 trybie pracy (rozładowanie). Po lewej stronie jest elektroda grafitowa (C₆), a po prawej tlenkowa (tlenek kobaltu). Ponieważ obie elektrody mogą "przyjmować" atomy litu (interkalacja), więc ich skład jest w ogólności zmienny i można go opisać jako Li_xC₆ oraz Li_xCoO₂.

Rys. 5-21 Interkalacja atomów litu pomiędzy warstwami w graficie. Maksymalna liczba 179 atomów litu do atomów węgla może wynosić 1 do 6, dlatego w pełni interkalowany grafit zapisujemy jako LiC₆.

7. Zestawienie tabel

Tab. 3-1 Przykładowe wyrażenia w zapisie matematycznym oraz ich zapis w COMSOLu.	33
Tab. 3-2 Stałe zdefiniowane w COMSOLu, ich oznaczenie oraz wartość.	36
Tab. 5-1 Dane do symulacji w reaktorze przepływowym z adsorpcją.	90
Tab. 5-2 Dane do obliczeń: początkowe stężenia, współczynniki dyfuzji oraz heterogeniczne stałe szybkości (na podstawie W. Kucza <i>et al.</i> str. 418). Grubość membrany $d=10^{-4}$ m (0.1 mm).	132
Tab. 5-3 Wyniki symulacji. W pierwszej kolumnie są stężenia jonu głównego I^{2+} (w COMSOLu jest to zmienna c1L) dla stężeń 10^3-10^{-10} , a w drugiej potencjał $V_{\text{Mem,ss}}$ w stanie stacjonarnym (ss).	134
Tab. 5-4 Parametry materiałowe ciał stałych.	155
Tab. 5-5 Właściwości gazu dane wzorami	155
Tab. 5-6 Gęstość gazu w funkcji temperatury.	156
Tab. 5-7 Warunki brzegowe dla równań Naviera–Stokesa.	156
Tab. 5-8 Parametry kinetyczne reakcji oraz konwekcji i promieniowania.	157
Tab. 5-9 Efekt energetyczny reakcji SHS w funkcji temperatury.	157
Tab. 5-10 Przykładowe wartości modułu Younga <i>E</i> (GPa) wybranych materiałów.	171

-234567890987654321